Preparation and Application of Polyclonal Antibodies Recognizing CP Protein in Pepper Mottle Virus
-
摘要:
目的 辣椒斑驳病毒(Pepper mottle virus,PepMoV)是近年来生产上主要侵染辣椒的新发病毒之一,目前有在我国快速扩展的趋势,因此,亟需开展该病毒的特异性快速检测技术,为明确该病毒在我国辣椒主产区的分布、发生致害规律及机制等研究提供科学手段。本研究以PepMoV编码的外壳蛋白CP为免疫源,制备特异性多克隆抗体,建立PepMoV的特异性快速检测方法,为PepMoV的分布和发生致害规律等研究奠定基础。 方法 采用特异性RT-PCR技术,从感染PepMoV辣椒的cDNA中扩增获得片段大小为822 bp的CP基因,并克隆到原核表达载体pET28α,转化E coli DH5α中进行诱导表达,采用Ni-NTA柱层析纯化。以纯化的重组CP蛋白作为抗原免疫新西兰白兔制备特异性多克隆抗体。制备的多克隆抗体采用ID-ELISA和Western blotting检测。 结果 获得原核表达的PepMoV重组CP蛋白,SDS-PAGE结果表明纯化蛋白为分子量约为37 kDa的单一条带。Western blotting和ID-ELISA检测结果表明,制备的多克隆抗体特异性高,仅识别PepMoV CP蛋白,不识别寄主蛋白和其他选择的马铃薯Y病毒;田间样本检测结果表明,PepMoV在湖南和贵州辣椒上的检出率为20.00%和43.33%。 结论 基于PepMoV CP蛋白特异性多克隆抗体建立的PepMoV快速检测方法,可为进一步深入研究该病毒在我国的分布和发生规律提供科学手段,也为该病毒CP蛋白的功能研究奠定基础。 Abstract:Objective A specific, rapid method based on the polyclonal antibody prepared using purified recombinant CP protein for detecting a typical Potyvirus, pepper mottle virus (PepMoV), on Capsicum annuum L. was developed to assess the distribution, occurrence ratio, and pathogenicity of the disease in China. Methods The 822 bp of CP was amplified by specific RT-PCR using the total RNA of PepMoV-infected chili peppers. It was cloned into prokaryotic expressing plasmid pET28α and expressed in E. coli DH5α. The recombinant CP protein was purified by Ni-NTA chromatography and used as the antigen to prepare the polyclonal antibodies to be verified by ID-ELISA and western blotting. Results The purified recombinant CP protein was approximately 37 kDa, and the prepared polyclonal antibody verified to specifically recognize PepMoV CP protein. The ID-ELISA method detected 20.00% PepMoV infection on field chili pepper specimens in Hunan and 43.33% in Guizhou. Conclusion The established specific and rapid detection method based on the polyclonal antibody against CP protein of PepMoV was applied to survey the disease spreading on chili peppers in China. It provided a tool for further studies on the CP protein. -
Key words:
- Pepper mottle virus /
- CP gene /
- polyclonal antibody /
- ID-ELISA /
- Rapid detection
-
图 2 PepMoV CP蛋白诱导表达纯化产物SDS-PAGE分析
M:蛋白分子量标准;1:未诱导总蛋白;2:诱导总蛋白;3:诱导上清液;4:诱导沉淀;5:纯化CP重组蛋白;6:BSA。
Figure 2. SDS-PAGE on purified PepMoV CP -induced expressing products
M: Protein ladder; 1: non-induced total protein; 2: induced total protein; 3: supernatant of induced total protein; 4: precipitate of induced total protein; 5: purified CP recombinant protein; 6: BSA.
图 4 PepMoV CP蛋白多克隆抗体特异性检测
A:Western blotting检测CP蛋白特异性检测;1:PVY;2:ChiRSV;3:PepMoV;4:纯化PepMoV CP重组蛋白;5:健康辣椒。B:ID-ELISA检测CP蛋白特异性;1:PVY;2:ChiRSV;3:PepMoV;4:阴性对照。
Figure 4. Specificity of PepMoV CP protein polyclonal antibody
A: Specificity of CP protein polyclonal antibody by western blotting; 1: PVY; 2: ChiRSV; 3: PepMoV; 4: purified recombinant CP protein. B: Specificity of CP protein polyclonal antibody by ID-ELISA; 1: PVY; 2: ChiRSV; 3: PepMoV; 4: negative control.
表 1 湖南和贵州辣椒PepMoV检出率
Table 1. Rates of positive detection of PepMoV on chili peppers in Hunan and Guizhou
采样地点
Sampling site样本数
Number of samplesID-ELISA阳性样本数
Number of positive samples by ID-ELISART-PCR阳性样本数
Number of positive samples by RT-PCRPepMoV检出率
Ratio of PepMoV/%湖南 Hunan 20 4 4 20.00 贵州 Guizhou 30 13 13 43.33 -
[1] SHUKLA D D, WARD C W, BRUNT A A. The Potyviridae[M]. Wallingford, OX: CAB International, 1994. [2] KIM M K, KWAK H R, HAN J H, et al. Isolation and characterization of pepper mottle virus infecting tomato in Korea [J]. Plant Pathology Journal, 2008, 24(2): 152−158. doi: 10.5423/PPJ.2008.24.2.152 [3] HAN J H, CHOI H S, KIM D H, et al. Biological, physical and cytological properties of pepper mottle virus-SNU1 and its RT-PCR detection [J]. Plant Pathology Journal, 2006, 22: 155−160. doi: 10.5423/PPJ.2006.22.2.155 [4] FANG M, YU J, KIM K H. Pepper mottle virus and its host interactions: Current state of knowledge [J]. Viruses, 2021, 13(10): 1930. doi: 10.3390/v13101930 [5] NELSON M R, WHEELER R E. A new virus disease of pepper in Arizona [J]. Plant Disease Reporter, 1972, 56: 731−735. [6] ZITTER T A. Naturally occurring pepper virus strains in South Florida [J]. Plant Disease Reporter, 1972, 56: 586. [7] QUINONES M, ARANA F, ALFENAS-ZERBINI P, et al. First report of pepper mottle virus in sweet pepper in Cuba [J]. New Disease Reports, 2011, 24: 16. doi: 10.5197/j.2044-0588.2011.024.016 [8] OGAWA Y, HAGIWARA K, IWAI H, et al. First report of pepper mottle virus on Capsicum annuum in Japan [J]. Journal of General Plant Pathology, 2003, 69(5): 348−350. doi: 10.1007/s10327-003-0059-6 [9] KAUR S, KANG S S, SHARMA A, et al. First report of pepper mottle virus infecting chilli pepper in India [J]. New Disease Reports, 2014, 30: 14. doi: 10.5197/j.2044-0588.2014.030.014 [10] MELZER M J, SUGANO J S, CABANAS D, et al. First report of pepper mottle virus infecting tomato in Hawaii [J]. Plant Disease, 2012, 96(6): 917. [11] CHENG Y H, DENG T C, CHEN C C, et al. First report of pepper mottle virus in bell pepper in Taiwan [J]. Plant Disease, 2011, 95(5): 617. [12] WARREN C E, MURPHY J F. The complete nucleotide sequence of Pepper mottle virus-Florida RNA [J]. Archives of Virology, 2003, 148(1): 189−197. doi: 10.1007/s00705-002-0915-2 [13] LUO X W, ZHANG D Y, ZHENG L M, et al. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid detection of Pepper mottle virus [J]. Canadian Journal of Plant Pathology, 2016, 38(4): 506−510. doi: 10.1080/07060661.2016.1261371 [14] ZHANG Y, LUO X W, ZHANG D Y, et al. Genome and phylogenetic analyses of Chinese pepper mottle virus isolates from chili pepper plants [J]. Journal of Plant Pathology, 2019, 101(3): 559−564. doi: 10.1007/s42161-018-00235-w [15] GONG Y N, TANG R Q, ZHANG Y, et al. The NIa-protease protein encoded by the pepper mottle virus is a pathogenicity determinant and releases DNA methylation of Nicotiana benthamiana [J]. Frontiers in Microbiology, 2020, 11: 102. doi: 10.3389/fmicb.2020.00102 [16] 刘勇, 李凡, 李月月, 等. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势 [J]. 中国农业科学, 2019(2):239−261. doi: 10.3864/j.issn.0578-1752.2019.02.005LIU Y, LI F, LI Y Y, et al. Identification, distribution and occurrence of viruses in the main vegetables of China [J]. Scientia Agricultura Sinica, 2019(2): 239−261.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.02.005 [17] 卜姗, 罗香文, 张德咏, 等. 辣椒脉黄病毒P4蛋白多克隆抗体制备与应用 [J]. 福建农业学报, 2022(1):74−78. doi: 10.19303/j.issn.1008-0384.2022.01.010BU S, LUO X W, ZHANG D Y, et al. Preparation and application of polyclonal antibody against vein yellows virus P4 on chili pepper plants [J]. Fujian Journal of Agricultural Sciences, 2022(1): 74−78.(in Chinese) doi: 10.19303/j.issn.1008-0384.2022.01.010 [18] 赵忠豪, 潘慧, 刘勇, 等. SRBSDV P8蛋白的多克隆抗体制备及其应用 [J]. 杂交水稻, 2020(3):71−75.ZHAO Z H, PAN H, LIU Y, et al. Preparation and application of polyclonal antibodies against the small core protein P8 encoded by SRBSDV [J]. Hybrid Rice, 2020(3): 71−75.(in Chinese) [19] 李聪, 田培洁, 张宇, 等. 烟草花叶病毒P54基因的原核表达与蛋白纯化 [J]. 福建农业学报, 2021(2):209−214. doi: 10.19303/j.issn.1008-0384.2021.02.011LI C, TIAN P J, ZHANG Y, et al. Prokaryotic expression and purification of tobacco mosaic virus specific P54 protein [J]. Fujian Journal of Agricultural Sciences, 2021(2): 209−214.(in Chinese) doi: 10.19303/j.issn.1008-0384.2021.02.011 [20] 龚明霞, 赵虎, 王萌, 等. 广西辣椒病毒的sRNA深度测序和RT-PCR鉴定 [J]. 园艺学报, 2022(5):1060−1072. doi: 10.16420/j.issn.0513-353x.2021-0673GONG M X, ZHAO H, WANG M, et al. Identification of viruses infecting peppers in Guangxi by small RNA deep sequencing and RT-PCR [J]. Acta Horticulturae Sinica, 2022(5): 1060−1072.(in Chinese) doi: 10.16420/j.issn.0513-353x.2021-0673 [21] WANG B, MA Y L, ZHANG Z B, et al. Potato viruses in China [J]. Crop Protection, 2011, 30(9): 1117−1123. doi: 10.1016/j.cropro.2011.04.001 [22] DUPUIS B, BRAGARD C, SCHUMPP O. Resistance of potato cultivars as a determinant factor of Potato virus Y (PVY) epidemiology [J]. Potato Research, 2019, 62: 123−138. doi: 10.1007/s11540-018-9401-4