Effects of Cinnamomum bodinieri Addition in Culture Substrate on Growth and Physiochemical Characteristics of Antrodia cinnamomea
-
摘要:
目的 明确添加猴樟Cinnamomum bodinieri基质对牛樟芝Antrodia cinnamomea生长及生理生化特性的影响,并筛选出适宜的猴樟茎、叶浓度。 方法 比较分析在牛樟芝基础培养基中添加质量浓度分别为0.125 、0.25、0.5、1 、2 、4、8 、16、32 、64 g·L−1的猴樟嫩枝、嫩叶、枝叶混合物时,牛樟芝的生长特性、生物量、SOD活性和总三萜(TT)含量的差异。 结果 在PDA培养基中添加质量浓度分别为0.5~4 g·L−1、2~8 g·L−1、1~4 g·L−1、4~16 g·L−1的猴樟嫩枝基质,牛樟芝相应表现出生长特性较优、生物量、SOD活性和TT含量较高的优势,并显著高于对照水平;在PDA培养基中添加猴樟嫩叶基质质量浓度为1~2 g·L−1时,其生长特性较优,SOD活性较高,当添加量为2~4 g·L−1时,其生物量和TT含量较高;在PDA培养基中添加猴樟枝叶混合物基质质量浓度分别为2~4 g·L−1、1~4 g·L−1、0.125~1 g·L−1、4~8 g·L−1时,其相应表现为生长特性较优、生物量、SOD活性和TT含量较高的优势。 结论 研究结果表明,总体来说,在PDA培养基中添加猴樟基质均能促进牛樟芝菌丝体、生物量、SOD活性和总三萜含量的提高,其中猴樟嫩叶基质2 g·L−1对菌丝体和生物量的提高最显著、猴樟嫩枝1 g·L−1或嫩叶基质2 g·L−1对菌丝体SOD活性的促进效果最显著;猴樟嫩枝基质8 g·L−1,对菌丝体总三萜含量的促进效果最显著,达到23.73 mg·g−1,较对照组提高了81.77%。该结果是樟属植物对牛樟芝培养的补充,为牛樟芝的规模化生产和开发利用提供了理论依据。 Abstract:Objective Effects and optimal amounts of branches and/or leaves of Cinnamomum bodinieri added in culture substrate on the growth and physiochemical characteristics of Antrodia cinnamomea were determined. Method The growth characteristics, biomass, SOD activity and total triterpenes (TT) content of A. cinnamomea were compared and analyzed when the young branches, leaves, both branches and leaves of C. bodinieri was added with mass concentration of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 g·L−1 in PDA medium. Result When various concentrations of C. bodinieri young branches 0.5–4 g·L−1, 2–8 g·L−1, 1–4 g·L−1and 4–16 g·L−1 were added to the PDA medium, the growth, biomass, SOD activity, and TT content of A. cinnamomea were significantly higher than those of control without the addition. With 1–2 g·L−1 added leaves in the substrate, A. cinnamomea grew well with an increased SOD activity; while at 2–4 g·L−1, raised biomass and TT content. By adding both branches and leaves at 2–4 g·L−1, 1–4 g·L−1, 0.125–1 g·L−1 and 4–8 g·L−1, the mushroom growth could be improved with increases on biomass, SOD activity, and TT content. Conclusion The results showed that, in general, the mycelium, biomass, SOD activity and total triterpene content of A.cinnammomea were increased by adding C. bodinieri in PDA mediu. Among them, 2 g·L−1 C. bodinieri young leaves significantly increased mycelium and biomassm. C.bodinieri young branches 1 g·L−1or leaves 2 g·L−1, the promotion effect of SOD activity in mycelium was the most significant. The 8 g·L−1 branches of C. bodinieri had the most significant promoting effect on the total triterpenoid content of mycelium, reaching 23.73 mg·g−1, which was increased by 81.77% compared with the control group. This result is a supplement to the culture of A. cinnammomea , and provided a theoretical basis for the large-scale production, development and utilization of A. cinnammomea. -
图 2 添加猴樟基质对牛樟芝SOD活性的影响
A:猴樟嫩枝基质;B:猴樟嫩叶基质;C:猴樟枝叶混合基质。小写字母表示在0.05水平差异显著,下同。
Figure 2. Effect of C. bodinieri addition in culture substrate on SOD activity of A. cinnamomea
A: C. bodinieri branches; B: C. bodinieri leaves; C: both branches and leaves of C. bodinieri. Data with different lowercase letters indicate significant differences at 0.05 level. Same for Fig.3.
表 1 添加猴樟嫩枝基质对牛樟芝生长特性的影响
Table 1. Effect of C. bodinieri branches addition in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency生长速度
Growth speed/(mm·d−1)生长指数
Growth indexPDA-0 34.08±9.82 f ☆ ++ 1.5 1.14±0.33 e 1.71±0.50 f Z-0.125 47.20±6.50 d ☆ ++ 1.5 1.58±0.22 d 2.37±0.33 e Z-0.25 51.93±8.20 cd ☆☆ +++ 2.5 1.73±0.27 cd 4.33±0.68 d Z-0.5 58.60±8.56 ab ☆☆☆ +++ 3 1.95±0.29 bc 5.85±0.87 ab Z-1 59.88±10.58 ab ☆☆☆ +++ 3 1.90±0.35 bc 5.70±1.05 ab Z-2 62.36±10.33 a ☆☆☆ +++ 3 2.00±0.34 ab 6.24±1.02 a Z-4 55.30±7.69 bc ☆☆ +++ 2.5 1.84±0.26 bc 4.60±0.65 bc Z-8 51.92±7.00 cd ☆☆ +++ 2.5 1.73±0.23 cd 4.33±0.58 d Z-16 49.71±9.65 d ☆☆ +++ 2.5 1.99±0.32 b 4.98±0.8 b Z-32 39.93±5.23 e ☆☆ ++ 2 2.00±0.17 b 4.00±0.34 d Z-64 38.50±5.16 ef ☆☆ ++ 2 2.28±0.17 a 4.56±0.34 cd ① “+”越多,密度越高;“☆”越多,颜色越深;菌落长势评级数值越高,长势越好。菌落长势的评级标准= (菌丝密度×菌落颜色)/2[22] 。② 表中不同小写字母表示在0.05水平差异显著;③ Z:猴樟嫩枝;Y:猴樟嫩叶;ZY:猴樟嫩枝叶混合;基质代号后的数值为添加量 (g·L−1)。下同。
① More "+" indicates greater density; more "☆", darker color; and higher colony growth rating, better colony growth. Rating standard of colony growth = (mycelium density × colony color) /2[22].② Data with different lowercase letters on same column indicate significant differences at 0.05 level. ③ Z: C. bodinieri branches; Y: C. bodinieri leaves; ZY: C. bodinieri both branches and leaves. Numbers in the treatment name were addition amount of C.bodinieri branches(g·L-1). Same for below.表 2 添加猴樟嫩叶基质对牛樟芝生长特性的影响
Table 2. Effect of C. bodinieri leaves addition in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency菌落生长速度
Growth speed/(mm·d−1)生长指数
Growth IndexPDA-0 34.08±9.82 e ☆ ++ 1.5 1.14±0.33 b 1.71±0.59 g Y-0.125 53.75±0.75 cd ☆☆ ++ 2 1.79±0.02 ab 3.58±0.04 f Y-0.25 54.17±6.18 cd ☆☆ ++ 2 2.14±0.54 ab 4.28±1.08 de Y-0.5 58.70±9.08 c ☆☆ ++ 2 1.96±0.30 ab 3.92±0.60 ef Y-1 71.19±6.96 b ☆☆☆ +++++ 4 2.37±0.23 a 9.49±0.92 a Y-2 86.60±4.28 a ☆☆☆ ++++ 3.5 2.65±0.14 a 9.28±0.49 a Y-4 69.44±8.49 b ☆☆ +++ 2.5 2.11±0.28 ab 5.28±0.70c Y-8 56.50±6.35 c ☆☆ +++ 2.5 2.55±0.21 a 6.38±0.53 b Y-16 52.25±7.49 cd ☆☆ +++ 2.5 2.41±0.25 ab 6.03±0.63 b Y-32 42.42±8.82 de ☆☆ ++ 2 2.41±0.29 ab 4.82±0.48 cd Y-64 35.50±8.89 e ☆☆ ++ 2 2.52±0.30 ab 5.04±0.60 c 表 3 添加猴樟枝叶混合物基质对牛樟芝生长特性的影响
Table 3. Effect of adding mixture of C. bodinieri branches and leaves in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency菌落生长速度
Growth speed/(mm·d−1)生长指数
Growth indexPDA-0 34.08±4.82 d ☆ ++ 1.5 1.14±0.33 c 1.71±0.50 e ZY-0.125 47.86±5.67 abcd ☆☆ ++ 2 1.93±0.36 ab 4.83±0.90 bc ZY-0.25 52.42±6.30 abc ☆☆ ++ 2 1.75±0.21 ab 4.37±0.53 cd ZY-0.5 55.57±1.95 abc ☆☆ +++ 2.5 1.69±0.07 b 5.06±0.21 b ZY-1 57.21±3.75 ab ☆☆☆ ++ 2.5 1.91±0.12 ab 4.78±0.30 bcd ZY-2 61.06±7.80 a ☆☆☆☆☆ ++++ 4.5 2.04±0.26 ab 6.12±0.78 a ZY-4 61.94±5.10 a ☆☆☆☆ ++++ 4 2.06±0.17 a 6.19±0.51 a ZY-8 54.63±8.84 abc ☆☆☆ +++ 3 1.82±0.29 ab 4.55±0.73 cd ZY-16 48.17±7.94 abcd ☆☆ +++ 2.5 1.94±0.29 ab 4.85±073 bc ZY-32 43.10±5.62 bcd ☆☆ ++ 2 2.44±0.19 ab 4.88±0.38 bc ZY-64 42.25±10.08 cd ☆☆ ++ 2 2.08±0.34 a 4.16±0.68 d 表 4 添加猴樟基质对牛樟芝生物量的影响
Table 4. Effect of C. bodinieri addition in culture substrate on biomass of A. cinnamomea
处理
Treatments干重
Dry weight/g处理
Treatments干重
Dry weight/g处理
Treatments干重
Dry weight/gPDA-0 0.06±0.01 d PDA-0 0.06±0.01 d PDA-0 0.06±0.01 e Z-0.125 0.07±0.02 cd Y-0.125 0.07±0.02 d ZY-0.125 0.09±0.01 de Z-0.25 0.09±0.01 bcd Y-0.25 0.07±0.03 d ZY-0.25 0.11±0.02 bcde Z-0.5 0.11±0.02 bcd Y-0.5 0.09±0.03 cd ZY-0.5 0.16±0.05 abcd Z-1 0.12±0.03 bcd Y-1 0.14±0.02 bcd ZY-1 0.20±0.02 a Z-2 0.19±0.03 a Y-2 0.24±0.07 a ZY-2 0.19±0.05 ab Z-4 0.15±0.06 ab Y-4 0.20±0.05 ab ZY-4 0.17±0.04 abc Z-8 0.13±0.03 abc Y-8 0.18±0.04 abc ZY-8 0.16±0.04 abcd Z-16 0.12±0.02 bcd Y-16 0.13±0.06 bcd ZY-16 0.16±0.04 abcd Z-32 0.09±0.02 bcd Y-32 0.11±0.05 bcd ZY-32 0.14±0.03 abcd Z-64 0.09±0.02 bcd Y-64 0.10±0.02 bcd ZY-64 0.10±0.02 cde -
[1] 吴雨. 皿培式牛樟芝化学成分及质量控制和活性研究[D]. 厦门: 厦门大学, 2018.WU Y. Study on chemical composition and quality control and activities of the Petri-dish cultured Antrodia camphorate[D]. Xiamen : Xiamen University, 2018. [2] 冯路瑶. 牛樟芝人工培养工艺及三萜类成分产生规律的研究[D]. 烟台: 鲁东大学, 2017.FENG L Y. Studies on artificial culture and the total triterpenes producing in Antrodia camphorata[D]. Yantai: Ludong University, 2017. [3] CHERNG I H, CHIANG H C, CHENG M C, et al. Three new triterpenoids from Antrodia cinnamomea [J]. Journal of Natural Products, 1995, 58(3): 365−371. doi: 10.1021/np50117a004 [4] CHENG I H, WU D P, Chiang H C. Triterpenoids from Antrodia cinnamomea [J]. Phytochemistry, 1996, 41(1): 263−267. doi: 10.1016/0031-9422(95)00541-2 [5] NAKAMURA N, HIRAKAWA A, GAO J J, et al. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line [J]. Journal of Natural Products, 2004, 67(1): 46−48. doi: 10.1021/np030293k [6] MENG L M, PAI M H, LIU J J, et al. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial Sepsis [J]. Nutrition (Burbank, Los Angeles County, Calif ), 2012, 28(9): 942−949. doi: 10.1016/j.nut.2012.01.006 [7] 张远腾, 李晓波. 牛樟芝化学成分及其药理作用研究进展 [J]. 中草药, 2016, 47(6):1034−1042.ZHANG Y T, LI X B. Research progress on active components of Antrodia cinnamomea and their pharmacological effects [J]. Acupuncture Research, 2016, 47(6): 1034−1042.(in Chinese) [8] SONG T Y, YEN G C. Antioxidant properties of Antrodia cinnamomea in submerged cultures [J]. J Agri Food Chem, 2002, 50(11): 3322−3327. doi: 10.1021/jf011671z [9] HUANG T T, WU S P, CHONG K Y, et al. The medicinal fungus Antrodia cinnamomea suppresses inflammation by inhibiting the NLRP3 inflammasome [J]. Journal of Ethnopharmacology, 2014, 155(1): 154−164. doi: 10.1016/j.jep.2014.04.053 [10] HSU Y L, KUO P L, CHO C Y, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway [J]. Food and Chemical Toxicology, 2007, 45(7): 1249−1257. doi: 10.1016/j.fct.2007.01.005 [11] HSIAO G, SHEN M Y, LIN K H, et al. Antioxidative and hepatoprotective effects of Antrodia camphorata extract [J]. Journal of Agricultural and Food Chemistry, 2003, 51(11): 3302−3308. doi: 10.1021/jf021159t [12] KUO M C, CHANG C Y, CHENG T L, et al. Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate [J]. Journal of Ethnopharmacology, 2008, 120(2): 196−203. doi: 10.1016/j.jep.2008.08.011 [13] 李晶, 林雄杰, 王泽辉, 等. 牛樟芝鲨烯环氧酶基因的克隆、生物信息学及表达分析 [J]. 中草药, 2018(10):2440−2446. doi: 10.7501/j.issn.0253-2670.2018.10.028LI J, LIN X J, WANG Z H, et al. Cloning, bioinformatics, and expression analysis of squalene epoxidase in Antrodia cinnamomea [J]. Chinese Traditional and Herbal Drugs, 2018(10): 2440−2446.(in Chinese) doi: 10.7501/j.issn.0253-2670.2018.10.028 [14] CHIU K Y, WU C C, CHIA C H, et al. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms [J]. Cancer Letters, 2016, 373(2): 174−184. doi: 10.1016/j.canlet.2015.11.046 [15] LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124−156. [16] 张东柱. 台湾特有珍贵药用真菌牛樟芝 [J]. 食药用菌, 2011(1):33−34.ZHANG D Z. Taiwan unique precious medicinal fungus Antrodia cinnamomea [J]. Edible and Medicinal Mushrooms, 2011(1): 33−34.(in Chinese) [17] 李菁, 胡佳, 陈绪涛, 等. 珍稀药用真菌牛樟芝的研究与利用进展 [J]. 食药用菌, 2022(2):103−108.LI J, HU J, CHEN X T, et al. Advances in the research and utilization of rare medicinal mushroom Antrodia camphorata [J]. Edible and Medicinal Mushrooms, 2022(2): 103−108.(in Chinese) [18] CHANG T T, CHOU W N. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan [J]. Mycol Res, 1995, 99(6): 756−758. doi: 10.1016/S0953-7562(09)80541-8 [19] 李晶, 夏舒宁, 张黛, 等. 不同菌草对皿培牛樟芝菌丝体的影响 [J]. 北方园艺, 2022(8):108−115.LI J, XIA S N, ZHANG D, et al. Effects of different Juncao on solid cultured mycelium of Antrodia camphorata [J]. Northern Horticulture, 2022(8): 108−115.(in Chinese) [20] 张知晓, 季梅, 刘凌, 等. 外源茉莉酸甲酯对牛樟芝产总三萜及多糖含量的影响 [J]. 江苏农业科学, 2019(19):133−133,134.ZHANG Z X, JI M, LIU L, et al. Impact of exogenous methyl jasmonate on total triterpenoids and polysaccharide contents of Antrodia camphorate [J]. Jiangsu Agricultural Sciences, 2019(19): 133−133,134.(in Chinese) [21] 谢春芹, 许俊齐, 曹正, 等. 牛樟芝液体培养基优化及饮品加工工艺研究 [J]. 食品研究与开发, 2018(17):64−69. doi: 10.3969/j.issn.1005-6521.2018.17.012XIE C Q, XU J Q, CAO Z, et al. The research of optimization of liquid medium and technology of drink processing of Antrodia camphorata [J]. Food Research and Development, 2018(17): 64−69.(in Chinese) doi: 10.3969/j.issn.1005-6521.2018.17.012 [22] 赵能, 原晓龙, 陈剑, 等. 不同碳氮源对牛樟芝菌丝体生长的影响 [J]. 西部林业科学, 2016(4):7−12. doi: 10.16473/j.cnki.xblykx1972.2016.04.002ZHAO N, YUAN X L, CHEN J, et al. Effect of different carbon and nitrogen sources on mycelia growth of Antrodia cinnamomea [J]. Journal of West China Forestry Science, 2016(4): 7−12.(in Chinese) doi: 10.16473/j.cnki.xblykx1972.2016.04.002 [23] 周夏, 王超. 牛樟芝高产总三萜固体培养基的优化 [J]. 食品科技, 2021(5):38−44. doi: 10.13684/j.cnki.spkj.2021.05.007ZHOU X, WANG C. Optimization of solid medium for triterpenoids-enriched Antrodia camphorata [J]. Food Science and Technology, 2021(5): 38−44.(in Chinese) doi: 10.13684/j.cnki.spkj.2021.05.007 [24] 李捷. 云南樟科植物区系地理 [J]. 云南植物研究, 1992(4):353−361.LI J. The floristic geography of lauraceous plants in Yunnan [J]. Acta Botanica Yunnanica, 1992(4): 353−361.(in Chinese) [25] 杨永, 刘冰. 中国樟科物种编目: 问题和展望 [J]. 生物多样性, 2015(2):232−236. doi: 10.17520/biods.2015027YANG Y, LIU B. Species catalogue of Lauraceae in China: Problems and perspectives [J]. Biodiversity Science, 2015(2): 232−236.(in Chinese) doi: 10.17520/biods.2015027 [26] 张倩倩, 黄青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正 [J]. 菌物学报, 2018, 37(12):1792−1801.ZHANG Q Q, HUANG Q. Revised method for determining Ganoderma Lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction [J]. Mycosystema, 2018, 37(12): 1792−1801.(in Chinese) [27] 孟红岩, 郭莺, 林文珍, 等. 3种樟属植物对皿式培养牛樟芝菌丝生长的影响 [J]. 西南农业学报, 2018(10):2173−2178.MENG H Y, GUO Y, LIN W Z, et al. Effects of three Cinnamomum plants on hyphae growth of plate cultured Antrodia camphorata [J]. Southwest China Journal of Agricultural Sciences, 2018(10): 2173−2178.(in Chinese) [28] 陆震鸣. 樟芝深层液态发酵及其三萜类化合物的研究[D]. 无锡: 江南大学, 2009.LU Z M. Study on Submerged Culture of Antrodia camphorcta and its Triterpenoids[D]. Wuxi: Jiangnan University, 2009. (in Chinese) [29] 汪雯翰, 孙太萍, 杨海芮, 等. 樟芝子实体和菌丝体萃取物的抑菌及抗氧化活性 [J]. 食用菌学报, 2016(2):79−83. doi: 10.16488/j.cnki.1005-9873.2016.02.016WANG W H, SUN T P, YANG H R, et al. Antibacterial and anti-oxidant properties of extracts derived from fruit bodies and mycelia of Taiwanofungus camphoratus [J]. Acta Edulis Fungi, 2016(2): 79−83.(in Chinese) doi: 10.16488/j.cnki.1005-9873.2016.02.016 [30] YANG F C, YANG Y H, LU H C. Enhanced antioxidant and antitumor activities of Antrodia cinnamomea, cultured with cereal substrates in solid state fermentation[J] Biochemical Engineering Journal, 2013, 78: 108-113. [31] 刁浩. 外源添加物对牛樟芝液体发酵的影响[D]. 北京: 北京化工大学, 2019.DIAO H. Effects of exogenous additives on liquid fermentation of antrodia cinnamomea[D]. Beijing: Beijing University of Chemical Technology, 2019.