• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加猴樟基质对牛樟芝生长及生理生化特性的影响

黄兴连 宝元朵 杨志娟 陈小涛 郑元

黄兴连,宝元朵,杨志娟,等. 添加猴樟基质对牛樟芝生长及生理生化特性的影响 [J]. 福建农业学报,2022,37(12):1586−1594 doi: 10.19303/j.issn.1008-0384.2022.012.010
引用本文: 黄兴连,宝元朵,杨志娟,等. 添加猴樟基质对牛樟芝生长及生理生化特性的影响 [J]. 福建农业学报,2022,37(12):1586−1594 doi: 10.19303/j.issn.1008-0384.2022.012.010
HUANG X L, BAO Y D, YANG Z J, et al. Effects of Cinnamomum bodinieri Addition in Culture Substrate on Growth and Physiochemical Characteristics of Antrodia cinnamomea [J]. Fujian Journal of Agricultural Sciences,2022,37(12):1586−1594 doi: 10.19303/j.issn.1008-0384.2022.012.010
Citation: HUANG X L, BAO Y D, YANG Z J, et al. Effects of Cinnamomum bodinieri Addition in Culture Substrate on Growth and Physiochemical Characteristics of Antrodia cinnamomea [J]. Fujian Journal of Agricultural Sciences,2022,37(12):1586−1594 doi: 10.19303/j.issn.1008-0384.2022.012.010

添加猴樟基质对牛樟芝生长及生理生化特性的影响

doi: 10.19303/j.issn.1008-0384.2022.012.010
基金项目: 国家自然科学基金项目(32160736);云南省基础研究计划面上项目(202101AT070044);云南省重大科技专项计划食用菌项目子课题(202002AE320003)
详细信息
    作者简介:

    黄兴连(1999−),男,研究方向:植物生理学和药食用菌学(E-mail:2870012173@qq.com

    通讯作者:

    郑元(1982−),男,副教授,研究方向:植物生理学和药食用菌学(E-mail:zhengyuan_001@126.com

  • 中图分类号: S 567.3

Effects of Cinnamomum bodinieri Addition in Culture Substrate on Growth and Physiochemical Characteristics of Antrodia cinnamomea

  • 摘要:   目的  明确添加猴樟Cinnamomum bodinieri基质对牛樟芝Antrodia cinnamomea生长及生理生化特性的影响,并筛选出适宜的猴樟茎、叶浓度。  方法  比较分析在牛樟芝基础培养基中添加质量浓度分别为0.125 、0.25、0.5、1 、2 、4、8 、16、32 、64 g·L−1的猴樟嫩枝、嫩叶、枝叶混合物时,牛樟芝的生长特性、生物量、SOD活性和总三萜(TT)含量的差异。  结果  在PDA培养基中添加质量浓度分别为0.5~4 g·L−1、2~8 g·L−1、1~4 g·L−1、4~16 g·L−1的猴樟嫩枝基质,牛樟芝相应表现出生长特性较优、生物量、SOD活性和TT含量较高的优势,并显著高于对照水平;在PDA培养基中添加猴樟嫩叶基质质量浓度为1~2 g·L−1时,其生长特性较优,SOD活性较高,当添加量为2~4 g·L−1时,其生物量和TT含量较高;在PDA培养基中添加猴樟枝叶混合物基质质量浓度分别为2~4 g·L−1、1~4 g·L−1、0.125~1 g·L−1、4~8 g·L−1时,其相应表现为生长特性较优、生物量、SOD活性和TT含量较高的优势。  结论  研究结果表明,总体来说,在PDA培养基中添加猴樟基质均能促进牛樟芝菌丝体、生物量、SOD活性和总三萜含量的提高,其中猴樟嫩叶基质2 g·L−1对菌丝体和生物量的提高最显著、猴樟嫩枝1 g·L−1或嫩叶基质2 g·L−1对菌丝体SOD活性的促进效果最显著;猴樟嫩枝基质8 g·L−1,对菌丝体总三萜含量的促进效果最显著,达到23.73 mg·g−1,较对照组提高了81.77%。该结果是樟属植物对牛樟芝培养的补充,为牛樟芝的规模化生产和开发利用提供了理论依据。
  • 图  1  牛樟芝菌丝体生长表型

    Z:猴樟嫩枝;Y:猴樟嫩叶;ZY:猴樟枝叶混合。

    Figure  1.  Growth phenotype of A.cinnamomea

    Z: C. bodinieri branches; Y: C. bodinieri leaves; ZY: C. bodinieri both branches and leaves.

    图  2  添加猴樟基质对牛樟芝SOD活性的影响

    A:猴樟嫩枝基质;B:猴樟嫩叶基质;C:猴樟枝叶混合基质。小写字母表示在0.05水平差异显著,下同。

    Figure  2.  Effect of C. bodinieri addition in culture substrate on SOD activity of A. cinnamomea

    A: C. bodinieri branches; B: C. bodinieri leaves; C: both branches and leaves of C. bodinieri. Data with different lowercase letters indicate significant differences at 0.05 level. Same for Fig.3.

    图  3  添加猴樟基质对牛樟芝总三萜含量(TT)的影响

    Figure  3.  Effect of C. bodinieri addition in culture substrate on TT content of A. cinnamomea

    表  1  添加猴樟嫩枝基质对牛樟芝生长特性的影响

    Table  1.   Effect of C. bodinieri branches addition in culture substrate on growth of A. cinnamomea

    处理
    Treatments
    菌落直径
    Colony diameter/mm
    菌落颜色
    Colony color
    菌丝密度
    Colony density
    菌落长势
    Growth tendency
    生长速度
    Growth speed/(mm·d−1)
    生长指数
    Growth index
    PDA-0 34.08±9.82 f++1.5 1.14±0.33 e 1.71±0.50 f
    Z-0.12547.20±6.50 d++1.51.58±0.22 d2.37±0.33 e
    Z-0.2551.93±8.20 cd☆☆+++2.51.73±0.27 cd4.33±0.68 d
    Z-0.558.60±8.56 ab☆☆☆+++31.95±0.29 bc5.85±0.87 ab
    Z-159.88±10.58 ab☆☆☆+++31.90±0.35 bc5.70±1.05 ab
    Z-262.36±10.33 a☆☆☆+++32.00±0.34 ab6.24±1.02 a
    Z-455.30±7.69 bc☆☆+++2.51.84±0.26 bc4.60±0.65 bc
    Z-851.92±7.00 cd☆☆+++2.51.73±0.23 cd4.33±0.58 d
    Z-1649.71±9.65 d☆☆+++2.51.99±0.32 b4.98±0.8 b
    Z-3239.93±5.23 e☆☆++22.00±0.17 b4.00±0.34 d
    Z-6438.50±5.16 ef☆☆++22.28±0.17 a4.56±0.34 cd
    ① “+”越多,密度越高;“☆”越多,颜色越深;菌落长势评级数值越高,长势越好。菌落长势的评级标准= (菌丝密度×菌落颜色)/2[22] 。② 表中不同小写字母表示在0.05水平差异显著;③ Z:猴樟嫩枝;Y:猴樟嫩叶;ZY:猴樟嫩枝叶混合;基质代号后的数值为添加量 (g·L−1)。下同。
    ① More "+" indicates greater density; more "☆", darker color; and higher colony growth rating, better colony growth. Rating standard of colony growth = (mycelium density × colony color) /2[22].② Data with different lowercase letters on same column indicate significant differences at 0.05 level. ③ Z: C. bodinieri branches; Y: C. bodinieri leaves; ZY: C. bodinieri both branches and leaves. Numbers in the treatment name were addition amount of C.bodinieri branches(g·L-1). Same for below.
    下载: 导出CSV

    表  2  添加猴樟嫩叶基质对牛樟芝生长特性的影响

    Table  2.   Effect of C. bodinieri leaves addition in culture substrate on growth of A. cinnamomea

    处理
    Treatments
    菌落直径
    Colony diameter/mm
    菌落颜色
    Colony color
    菌丝密度
    Colony density
    菌落长势
    Growth tendency
    菌落生长速度
    Growth speed/(mm·d−1)
    生长指数
    Growth Index
    PDA-0 34.08±9.82 e++ 1.5 1.14±0.33 b 1.71±0.59 g
    Y-0.12553.75±0.75 cd☆☆++21.79±0.02 ab3.58±0.04 f
    Y-0.2554.17±6.18 cd☆☆++22.14±0.54 ab4.28±1.08 de
    Y-0.558.70±9.08 c☆☆++21.96±0.30 ab3.92±0.60 ef
    Y-171.19±6.96 b☆☆☆+++++42.37±0.23 a9.49±0.92 a
    Y-286.60±4.28 a☆☆☆++++3.52.65±0.14 a9.28±0.49 a
    Y-469.44±8.49 b☆☆+++2.52.11±0.28 ab5.28±0.70c
    Y-856.50±6.35 c☆☆+++2.52.55±0.21 a6.38±0.53 b
    Y-1652.25±7.49 cd☆☆+++2.52.41±0.25 ab6.03±0.63 b
    Y-3242.42±8.82 de☆☆++22.41±0.29 ab4.82±0.48 cd
    Y-6435.50±8.89 e☆☆++22.52±0.30 ab5.04±0.60 c
    下载: 导出CSV

    表  3  添加猴樟枝叶混合物基质对牛樟芝生长特性的影响

    Table  3.   Effect of adding mixture of C. bodinieri branches and leaves in culture substrate on growth of A. cinnamomea

    处理
    Treatments
    菌落直径
    Colony diameter/mm
    菌落颜色
    Colony color
    菌丝密度
    Colony density
    菌落长势
    Growth tendency
    菌落生长速度
    Growth speed/(mm·d−1)
    生长指数
    Growth index
    PDA-0 34.08±4.82 d++ 1.5 1.14±0.33 c 1.71±0.50 e
    ZY-0.12547.86±5.67 abcd☆☆++21.93±0.36 ab4.83±0.90 bc
    ZY-0.2552.42±6.30 abc☆☆++21.75±0.21 ab4.37±0.53 cd
    ZY-0.555.57±1.95 abc☆☆+++2.51.69±0.07 b5.06±0.21 b
    ZY-157.21±3.75 ab☆☆☆++2.51.91±0.12 ab4.78±0.30 bcd
    ZY-261.06±7.80 a☆☆☆☆☆++++4.52.04±0.26 ab6.12±0.78 a
    ZY-461.94±5.10 a☆☆☆☆++++42.06±0.17 a6.19±0.51 a
    ZY-854.63±8.84 abc☆☆☆+++31.82±0.29 ab4.55±0.73 cd
    ZY-1648.17±7.94 abcd☆☆+++2.51.94±0.29 ab4.85±073 bc
    ZY-3243.10±5.62 bcd☆☆++22.44±0.19 ab4.88±0.38 bc
    ZY-6442.25±10.08 cd☆☆++22.08±0.34 a4.16±0.68 d
    下载: 导出CSV

    表  4  添加猴樟基质对牛樟芝生物量的影响

    Table  4.   Effect of C. bodinieri addition in culture substrate on biomass of A. cinnamomea

    处理
    Treatments
    干重
    Dry weight/g
    处理
    Treatments
    干重
    Dry weight/g
    处理
    Treatments
    干重
    Dry weight/g
    PDA-0 0.06±0.01 d PDA-0 0.06±0.01 d PDA-0 0.06±0.01 e
    Z-0.125 0.07±0.02 cd Y-0.125 0.07±0.02 d ZY-0.125 0.09±0.01 de
    Z-0.25 0.09±0.01 bcd Y-0.25 0.07±0.03 d ZY-0.25 0.11±0.02 bcde
    Z-0.5 0.11±0.02 bcd Y-0.5 0.09±0.03 cd ZY-0.5 0.16±0.05 abcd
    Z-1 0.12±0.03 bcd Y-1 0.14±0.02 bcd ZY-1 0.20±0.02 a
    Z-2 0.19±0.03 a Y-2 0.24±0.07 a ZY-2 0.19±0.05 ab
    Z-4 0.15±0.06 ab Y-4 0.20±0.05 ab ZY-4 0.17±0.04 abc
    Z-8 0.13±0.03 abc Y-8 0.18±0.04 abc ZY-8 0.16±0.04 abcd
    Z-16 0.12±0.02 bcd Y-16 0.13±0.06 bcd ZY-16 0.16±0.04 abcd
    Z-32 0.09±0.02 bcd Y-32 0.11±0.05 bcd ZY-32 0.14±0.03 abcd
    Z-64 0.09±0.02 bcd Y-64 0.10±0.02 bcd ZY-64 0.10±0.02 cde
    下载: 导出CSV
  • [1] 吴雨. 皿培式牛樟芝化学成分及质量控制和活性研究[D]. 厦门: 厦门大学, 2018.

    WU Y. Study on chemical composition and quality control and activities of the Petri-dish cultured Antrodia camphorate[D]. Xiamen : Xiamen University, 2018.
    [2] 冯路瑶. 牛樟芝人工培养工艺及三萜类成分产生规律的研究[D]. 烟台: 鲁东大学, 2017.

    FENG L Y. Studies on artificial culture and the total triterpenes producing in Antrodia camphorata[D]. Yantai: Ludong University, 2017.
    [3] CHERNG I H, CHIANG H C, CHENG M C, et al. Three new triterpenoids from Antrodia cinnamomea [J]. Journal of Natural Products, 1995, 58(3): 365−371. doi: 10.1021/np50117a004
    [4] CHENG I H, WU D P, Chiang H C. Triterpenoids from Antrodia cinnamomea [J]. Phytochemistry, 1996, 41(1): 263−267. doi: 10.1016/0031-9422(95)00541-2
    [5] NAKAMURA N, HIRAKAWA A, GAO J J, et al. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line [J]. Journal of Natural Products, 2004, 67(1): 46−48. doi: 10.1021/np030293k
    [6] MENG L M, PAI M H, LIU J J, et al. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial Sepsis [J]. Nutrition (Burbank, Los Angeles County, Calif ), 2012, 28(9): 942−949. doi: 10.1016/j.nut.2012.01.006
    [7] 张远腾, 李晓波. 牛樟芝化学成分及其药理作用研究进展 [J]. 中草药, 2016, 47(6):1034−1042.

    ZHANG Y T, LI X B. Research progress on active components of Antrodia cinnamomea and their pharmacological effects [J]. Acupuncture Research, 2016, 47(6): 1034−1042.(in Chinese)
    [8] SONG T Y, YEN G C. Antioxidant properties of Antrodia cinnamomea in submerged cultures [J]. J Agri Food Chem, 2002, 50(11): 3322−3327. doi: 10.1021/jf011671z
    [9] HUANG T T, WU S P, CHONG K Y, et al. The medicinal fungus Antrodia cinnamomea suppresses inflammation by inhibiting the NLRP3 inflammasome [J]. Journal of Ethnopharmacology, 2014, 155(1): 154−164. doi: 10.1016/j.jep.2014.04.053
    [10] HSU Y L, KUO P L, CHO C Y, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway [J]. Food and Chemical Toxicology, 2007, 45(7): 1249−1257. doi: 10.1016/j.fct.2007.01.005
    [11] HSIAO G, SHEN M Y, LIN K H, et al. Antioxidative and hepatoprotective effects of Antrodia camphorata extract [J]. Journal of Agricultural and Food Chemistry, 2003, 51(11): 3302−3308. doi: 10.1021/jf021159t
    [12] KUO M C, CHANG C Y, CHENG T L, et al. Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate [J]. Journal of Ethnopharmacology, 2008, 120(2): 196−203. doi: 10.1016/j.jep.2008.08.011
    [13] 李晶, 林雄杰, 王泽辉, 等. 牛樟芝鲨烯环氧酶基因的克隆、生物信息学及表达分析 [J]. 中草药, 2018(10):2440−2446. doi: 10.7501/j.issn.0253-2670.2018.10.028

    LI J, LIN X J, WANG Z H, et al. Cloning, bioinformatics, and expression analysis of squalene epoxidase in Antrodia cinnamomea [J]. Chinese Traditional and Herbal Drugs, 2018(10): 2440−2446.(in Chinese) doi: 10.7501/j.issn.0253-2670.2018.10.028
    [14] CHIU K Y, WU C C, CHIA C H, et al. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms [J]. Cancer Letters, 2016, 373(2): 174−184. doi: 10.1016/j.canlet.2015.11.046
    [15] LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124−156.
    [16] 张东柱. 台湾特有珍贵药用真菌牛樟芝 [J]. 食药用菌, 2011(1):33−34.

    ZHANG D Z. Taiwan unique precious medicinal fungus Antrodia cinnamomea [J]. Edible and Medicinal Mushrooms, 2011(1): 33−34.(in Chinese)
    [17] 李菁, 胡佳, 陈绪涛, 等. 珍稀药用真菌牛樟芝的研究与利用进展 [J]. 食药用菌, 2022(2):103−108.

    LI J, HU J, CHEN X T, et al. Advances in the research and utilization of rare medicinal mushroom Antrodia camphorata [J]. Edible and Medicinal Mushrooms, 2022(2): 103−108.(in Chinese)
    [18] CHANG T T, CHOU W N. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan [J]. Mycol Res, 1995, 99(6): 756−758. doi: 10.1016/S0953-7562(09)80541-8
    [19] 李晶, 夏舒宁, 张黛, 等. 不同菌草对皿培牛樟芝菌丝体的影响 [J]. 北方园艺, 2022(8):108−115.

    LI J, XIA S N, ZHANG D, et al. Effects of different Juncao on solid cultured mycelium of Antrodia camphorata [J]. Northern Horticulture, 2022(8): 108−115.(in Chinese)
    [20] 张知晓, 季梅, 刘凌, 等. 外源茉莉酸甲酯对牛樟芝产总三萜及多糖含量的影响 [J]. 江苏农业科学, 2019(19):133−133,134.

    ZHANG Z X, JI M, LIU L, et al. Impact of exogenous methyl jasmonate on total triterpenoids and polysaccharide contents of Antrodia camphorate [J]. Jiangsu Agricultural Sciences, 2019(19): 133−133,134.(in Chinese)
    [21] 谢春芹, 许俊齐, 曹正, 等. 牛樟芝液体培养基优化及饮品加工工艺研究 [J]. 食品研究与开发, 2018(17):64−69. doi: 10.3969/j.issn.1005-6521.2018.17.012

    XIE C Q, XU J Q, CAO Z, et al. The research of optimization of liquid medium and technology of drink processing of Antrodia camphorata [J]. Food Research and Development, 2018(17): 64−69.(in Chinese) doi: 10.3969/j.issn.1005-6521.2018.17.012
    [22] 赵能, 原晓龙, 陈剑, 等. 不同碳氮源对牛樟芝菌丝体生长的影响 [J]. 西部林业科学, 2016(4):7−12. doi: 10.16473/j.cnki.xblykx1972.2016.04.002

    ZHAO N, YUAN X L, CHEN J, et al. Effect of different carbon and nitrogen sources on mycelia growth of Antrodia cinnamomea [J]. Journal of West China Forestry Science, 2016(4): 7−12.(in Chinese) doi: 10.16473/j.cnki.xblykx1972.2016.04.002
    [23] 周夏, 王超. 牛樟芝高产总三萜固体培养基的优化 [J]. 食品科技, 2021(5):38−44. doi: 10.13684/j.cnki.spkj.2021.05.007

    ZHOU X, WANG C. Optimization of solid medium for triterpenoids-enriched Antrodia camphorata [J]. Food Science and Technology, 2021(5): 38−44.(in Chinese) doi: 10.13684/j.cnki.spkj.2021.05.007
    [24] 李捷. 云南樟科植物区系地理 [J]. 云南植物研究, 1992(4):353−361.

    LI J. The floristic geography of lauraceous plants in Yunnan [J]. Acta Botanica Yunnanica, 1992(4): 353−361.(in Chinese)
    [25] 杨永, 刘冰. 中国樟科物种编目: 问题和展望 [J]. 生物多样性, 2015(2):232−236. doi: 10.17520/biods.2015027

    YANG Y, LIU B. Species catalogue of Lauraceae in China: Problems and perspectives [J]. Biodiversity Science, 2015(2): 232−236.(in Chinese) doi: 10.17520/biods.2015027
    [26] 张倩倩, 黄青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正 [J]. 菌物学报, 2018, 37(12):1792−1801.

    ZHANG Q Q, HUANG Q. Revised method for determining Ganoderma Lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction [J]. Mycosystema, 2018, 37(12): 1792−1801.(in Chinese)
    [27] 孟红岩, 郭莺, 林文珍, 等. 3种樟属植物对皿式培养牛樟芝菌丝生长的影响 [J]. 西南农业学报, 2018(10):2173−2178.

    MENG H Y, GUO Y, LIN W Z, et al. Effects of three Cinnamomum plants on hyphae growth of plate cultured Antrodia camphorata [J]. Southwest China Journal of Agricultural Sciences, 2018(10): 2173−2178.(in Chinese)
    [28] 陆震鸣. 樟芝深层液态发酵及其三萜类化合物的研究[D]. 无锡: 江南大学, 2009.

    LU Z M. Study on Submerged Culture of Antrodia camphorcta and its Triterpenoids[D]. Wuxi: Jiangnan University, 2009. (in Chinese)
    [29] 汪雯翰, 孙太萍, 杨海芮, 等. 樟芝子实体和菌丝体萃取物的抑菌及抗氧化活性 [J]. 食用菌学报, 2016(2):79−83. doi: 10.16488/j.cnki.1005-9873.2016.02.016

    WANG W H, SUN T P, YANG H R, et al. Antibacterial and anti-oxidant properties of extracts derived from fruit bodies and mycelia of Taiwanofungus camphoratus [J]. Acta Edulis Fungi, 2016(2): 79−83.(in Chinese) doi: 10.16488/j.cnki.1005-9873.2016.02.016
    [30] YANG F C, YANG Y H, LU H C. Enhanced antioxidant and antitumor activities of Antrodia cinnamomea, cultured with cereal substrates in solid state fermentation[J] Biochemical Engineering Journal, 2013, 78: 108-113.
    [31] 刁浩. 外源添加物对牛樟芝液体发酵的影响[D]. 北京: 北京化工大学, 2019.

    DIAO H. Effects of exogenous additives on liquid fermentation of antrodia cinnamomea[D]. Beijing: Beijing University of Chemical Technology, 2019.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  209
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-24
  • 修回日期:  2022-09-09
  • 网络出版日期:  2022-12-28
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回