Effects of Nitrogen Fertilizer Reduction Accompanied by Biochar Application on Yield and Nitrogen Accumulation of Rice at Various Growth Stages
-
摘要:
目的 探究化学氮肥减量配施不同生物炭比例的还田效应,为稻田秸秆生物炭高效利用提供依据。 方法 采用田间定位试验,共设6个处理:对照CK(不施氮肥,只施磷钾肥)、常规施肥T0(100%化肥氮)、T1(90%化肥氮+2.5 t·hm−2 生物炭)、T2(80%化肥氮+5.0 t·hm−2 生物炭)、T3(70%化肥氮+7.5 t·hm−2 生物炭)、T4(60%化肥氮+10.0 t·hm−2 生物炭)。每个处理3次重复,按随机区组排列。 结果 水稻产量随减氮配施生物炭比例增加呈先增加后降低趋势,以T2处理最高,较常规施肥T0处理显著提高了10.22%(P<0.05)。3个时期地上部和根系各处理氮素累积量分别为T2和T3处理最高,且氮素累积量均成熟期最高;与T0处理相比,成熟期T1、T2和T3处理的秸秆和籽粒及根系氮素累积量分别提高了5.05%~15.96%、4.65%~21.45%和 6.76%~19.00%,且籽粒部分氮素累积量最高。T1~T4处理的秸秆生物量、氮肥偏生产力和氮肥农学效率较T0处理分别提高了5.34%~41.44%、17.43%~63.81%和42.50%~85.93%,T1、T2和T3处理的氮肥表观利用率提高了77.12%~106.79%,均T2处理最高;与T0处理相比,T1处理的氮素收获指数降低,其余处理均增加。 结论 80%化肥氮+5.0 t·hm−2生物炭能显著增加水稻产量、提高氮肥利用效率和促进水稻对氮素的累积。 Abstract:Objective Effects of nitrogen fertilizer reduction accompanied by a biochar addition on the yield and nutrient conversion of rice plants were analyzed to promote straw waste utilization in paddy fields. Method In a field experiment, designated lots was assigned for fertilization on rice plants using either only P and K but no N fertilizer (CK), conventional 100% N fertilization (T0), 90% N fertilization with addition of 2.5 t·hm−2 biochar (T1), 80% N fertilization with addition of 5.0 t·hm−2 biochar (T2), 70% N fertilization with addition of 7.5 t·hm−2 biochar (T3), or 60% N fertilization with addition of 10.0 t·hm−2 biochar (T4). The triplicated treatments were arranged by random block group. Results The rice yield increased as the N fertilizer was increasingly reduced along with the added biochar to peak at the T2 treatment. The 10.22% increase over T0 was significant (P<0.05), but it started to decline upon further reduction on N. The greatest N accumulation in the rice shoots was found under T2 as well as in the roots under T3 and at maturation. Under T1, T2, and T3, the N accumulations in the straws of a rice plant at maturity increased by 5.05%–15.96%, in the roots by 6.76%–19.00%, and the highest in the grains by 4.65%–21.45% over T0. The straw biomass, N partial productivity, and N agronomic efficiency increased by 5.34%–41.44%, 17.43%–63.81%, and 42.50%–85.93% over T0 under T1, T2, T3, and T4, respectively, while the apparent N utilization enhanced by 77.12%–106.79% with T2 being the most. The N harvest index of T1 was lower than T0, but higher than other treatments. Conclusion The 80% N fertilization with the addition of 5.0 t·hm−2 biochar (T2) significantly increased the yield, N utilization efficiency, and N accumulation of the rice plants. -
Key words:
- Rice yields /
- biochar /
- growth period /
- nitrogen accumulation /
- nitrogen use efficiency
-
表 1 不同处理的生物炭和化肥用量
Table 1. Fertilizer and biochar applications for treatments
处理
Treatment生物炭
Biochar/
(t·hm−2)化肥用量
Consumption of chemical fertilizers/(kg·hm−2)N P2O5 K2O CK 0.0 0 148 230 T0 0.0 150 148 230 T1 2.5 135 148 230 T2 5.0 120 148 230 T3 7.5 105 148 230 T4 10.0 90 148 230 表 2 不同施肥处理的水稻产量及其构成因子
Table 2. Rice yield and components under treatments
处理
Treatments有效穗数
Number of productive ear/(×104 穗·hm−2)穗粒数
Kernels per spike结实率
Setting rate/%千粒重
1000-grain weight/g水稻产量
Rice yield/(t·hm−2)CK 144.44±10.49 c 181.65±28.08 c 83.02±3.80 c 24.93±0.11 b 6.95±0.54 d T0 156.95±9.39 bc 216.28±25.48 bc 92.56±0.75 a 25.37±0.57 ab 8.91±0.42 bc T1 189.58±11.03 a 226.54±21.92 b 92.91±1.02 a 25.78±1.04 ab 9.41±0.29 ab T2 194.44±9.85 a 275.03±16.55 a 87.31±0.17 b 25.81±0.68 ab 9.82±0.42 a T3 175.83±8.04 ab 224.07±17.31 b 91.21±0.65 a 26.26±0.19 a 9.27±0.33 ab T4 184.72±13.87 a 253.64±21.83 ab 90.19±0.23 ab 26.47±0.73 a 8.30±0.59 c 同列数值后不同小写字母表示处理间差异显著(P<0.05)。表3同。
A lowercase letter after the value of each column indicates the significance of the difference between treatments (P<0.05). Same for Table 3.表 3 不同施肥处理的秸秆生物量及氮肥利用率
Table 3. Straw biomass and N utilization efficiency of rice plants under treatments
处理
Treatment秸秆生物量
Straw biomass/(t·hm−2)氮肥偏生产力
PFPN/(kg·kg−1)氮肥农学效率
AEN/(kg·kg−1)氮肥表观利用率
REN/%氮素收获指数
NHI/%CK 6.62±0.50 c — — — 59.76±2.98 c T0 7.11±0.63 bc 51.34±3.48 d 12.44±0.96 c 15.72±0.76 b 60.44±2.04 bc T1 10.05±0.27 a 60.29±1.88 c 17.73±0.87 b 29.18±2.72 a 59.92±3.27 c T2 10.06±0.69 a 84.10±3.99 a 23.13±2.07 a 32.51±3.76 a 62.25±3.88 bc T3 7.78±0.27 b 76.38±2.73 b 21.80±1.31 a 27.84±3.07 a 67.08±3.83 ab T4 7.49±0.27 b 79.76±5.64 ab 18.24±0.44 b 11.22±1.24 b 70.47±5.89 a -
[1] 虞国平. 水稻在我国粮食安全中的战略地位分析 [J]. 新西部(下半月), 2009(11):31−33.YU G P. Analysis on the strategic position of rice in China's food security [J]. New West, 2009(11): 31−33.(in Chinese) [2] 曹志洪. 施肥与水体环境质量: 论施肥对环境的影响(2) [J]. 土壤, 2003, 35(5):353−363. doi: 10.3321/j.issn:0253-9829.2003.05.001CAO Z H. Effect of fertilization on water quality ──effect of fertilization on environment quality (2) [J]. Soils, 2003, 35(5): 353−363.(in Chinese) doi: 10.3321/j.issn:0253-9829.2003.05.001 [3] 朱兆良. 合理使用化肥充分利用有机肥发展环境友好的施肥体系 [J]. 中国科学院院刊, 2003, 18(2):89−93. doi: 10.3969/j.issn.1000-3045.2003.02.003ZHU Z L. Fertilizer management strategies for the harmonization of agriculture development with environment protection [J]. Bulletin of the Chinese Academy of Sciences, 2003, 18(2): 89−93.(in Chinese) doi: 10.3969/j.issn.1000-3045.2003.02.003 [4] FENG Y F, SUN H J, XUE L H. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil [J]. Chemosphere, 2017, 168: 1277−1284. doi: 10.1016/j.chemosphere.2016.11.151 [5] 王典, 张祥, 姜存仓, 等. 生物质炭改良土壤及对作物效应的研究进展 [J]. 中国生态农业学报, 2012, 20(8):963−967. doi: 10.3724/SP.J.1011.2012.00963WANG D, ZHANG X, JIANG C C, et al. Biochar research advances regarding soil improvement and crop response [J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 963−967.(in Chinese) doi: 10.3724/SP.J.1011.2012.00963 [6] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展 [J]. 生态环境学报, 2011, 20(4):779−785. doi: 10.3969/j.issn.1674-5906.2011.04.034YUAN J H, XU R K. Progress of the research on the properties of biochars and their influence on soil environmental functions [J]. Ecology and Environmental Sciences, 2011, 20(4): 779−785.(in Chinese) doi: 10.3969/j.issn.1674-5906.2011.04.034 [7] 邱海燕, 孙娇, 陈刚, 等. 生物炭对宁夏新垦地玉米产量及农艺性状的影响研究 [J]. 宁夏农林科技, 2017, 58(11):27−30. doi: 10.3969/j.issn.1002-204X.2017.11.011QIU H Y, SUN J, CHEN G, et al. Effect of biochar on yield and agronomic traits of maize in new-reclamation land of Ningxia [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2017, 58(11): 27−30.(in Chinese) doi: 10.3969/j.issn.1002-204X.2017.11.011 [8] 李帅霖, 上官周平. 生物炭对不同水氮条件下小麦产量的影响 [J]. 干旱地区农业研究, 2018, 36(2):8−15. doi: 10.7606/j.issn.1000-7601.2018.02.02LI S L, SHANGGUAN Z P. Effects of biochar on wheat yield under different water and nitrogen conditions [J]. Agricultural Research in the Arid Areas, 2018, 36(2): 8−15.(in Chinese) doi: 10.7606/j.issn.1000-7601.2018.02.02 [9] 张伟明, 管学超, 黄玉威, 等. 生物炭与化学肥料互作的大豆生物学效应 [J]. 作物学报, 2015, 41(1):109−122. doi: 10.3724/SP.J.1006.2015.00109ZHANG W M, GUAN X C, HUANG Y W, et al. Biological effects of biochar and fertilizer interaction in soybean plant [J]. Acta Agronomica Sinica, 2015, 41(1): 109−122.(in Chinese) doi: 10.3724/SP.J.1006.2015.00109 [10] 柳瑞, 高阳, 李恩琳, 等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响 [J]. 生态环境学报, 2020, 29(5):926−932. doi: 10.16258/j.cnki.1674-5906.2020.05.008LIU R, GAO Y, LI E L, et al. Effects of reduced nitrogen and biochar application on plant growth, dry matter accumulation and rice yield [J]. Ecology and Environmental Sciences, 2020, 29(5): 926−932.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.05.008 [11] UZOMA K C, INOUE M, ANDRY H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition [J]. Soil Use and Management, 2011, 27(2): 205−212. doi: 10.1111/j.1475-2743.2011.00340.x [12] JEFFERY S, VERHEIJEN F G A, VAN DER VELDE M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis [J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175−187. [13] ASAI H, SAMSON B K, STEOHON H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research, 2009, 111(1/2): 81−84. [14] DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243−248. doi: 10.1016/j.jaap.2004.07.003 [15] 宋延静, 龚骏. 施用生物质炭对土壤生态系统功能的影响 [J]. 鲁东大学学报(自然科学版), 2010, 26(4):361−365.SONG Y J, GONG J. Effects of biochar application on soil ecosystem functions [J]. Ludong University Journal (Natural Science Edition), 2010, 26(4): 361−365.(in Chinese) [16] VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1): 235−246. [17] 王智慧, 唐春双, 赵长江, 等. 生物炭与肥料配施对土壤养分及玉米产量的影响 [J]. 玉米科学, 2018, 26(6):146−151,159. doi: 10.13597/j.cnki.maize.science.20180625WANG Z H, TANG C S, ZHAO C J, et al. Effects of biochar and chemical fertilizer interaction on soil nutrient and maize yield [J]. Journal of Maize Sciences, 2018, 26(6): 146−151,159.(in Chinese) doi: 10.13597/j.cnki.maize.science.20180625 [18] 史登林, 王小利, 刘安凯, 等. 生物炭氮替代部分化肥氮对黄壤水稻的生物效应 [J]. 中国土壤与肥料, 2021(2):199−205. doi: 10.11838/sfsc.1673-6257.20255SHI D L, WANG X L, LIU A K, et al. Biological effect of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil [J]. Soil and Fertilizer Sciences in China, 2021(2): 199−205.(in Chinese) doi: 10.11838/sfsc.1673-6257.20255 [19] 蔡祖聪, 钦绳武. 华北潮土长期试验中的作物产量、氮肥利用率及其环境效应 [J]. 土壤学报, 2006, 43(6):885−891. doi: 10.3321/j.issn:0564-3929.2006.06.001CAI Z C, QIN S W. Crop yield, N use efficiency and environmental impact of a long-term fertilization experiment in fluvor aquic soil in North China [J]. Acta Pedologica Sinica, 2006, 43(6): 885−891.(in Chinese) doi: 10.3321/j.issn:0564-3929.2006.06.001 [20] LIU X Y, ZHANG A F, JI C Y, et al. Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data [J]. Plant and Soil, 2013, 373(1): 583−594. [21] YAO F X, ARBESTAIN M C, VIRGEL S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor [J]. Chemosphere, 2010, 80(7): 724−732. doi: 10.1016/j.chemosphere.2010.05.026 [22] 赵思文, 王茜, 裴志强, 等. 高氮土壤下腐植酸与不同量生物炭配施对甜高粱生长及氮素吸收影响研究 [J]. 天津农学院学报, 2019, 26(4):5−8. doi: 10.19640/j.cnki.jtau.2019.04.002ZHAO S W, WANG X, PEI Z Q, et al. Effects of humic acid and different amounts of biochar on the growth and nitrogen uptake of sweet sorghum in high nitrogen soil [J]. Journal of Tianjin Agricultural University, 2019, 26(4): 5−8.(in Chinese) doi: 10.19640/j.cnki.jtau.2019.04.002 [23] 李卓瑞, 韦高玲. 不同生物炭添加量对土壤中氮磷淋溶损失的影响 [J]. 生态环境学报, 2016, 25(2):333−338. doi: 10.16258/j.cnki.1674-5906.2016.02.022LI Z R, WEI G L. Effects of biochar with different additive amounts on the leaching loss of nitrogen and Phosphorus in soils [J]. Ecology and Environmental Sciences, 2016, 25(2): 333−338.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2016.02.022 [24] 程效义, 刘晓琳, 孟军, 等. 生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响 [J]. 农业环境科学学报, 2016, 35(4):801−807. doi: 10.11654/jaes.2016.04.026CHENG X Y, LIU X L, MENG J, et al. Effects of biochar on NH3 volatilization, N2O emission and nitrogen fertilizer use efficiency in brown soil [J]. Journal of Agro-Environment Science, 2016, 35(4): 801−807.(in Chinese) doi: 10.11654/jaes.2016.04.026 [25] 彭辉辉, 刘强, 荣湘民, 等. 生物炭、有机肥与化肥配施对春玉米养分利用及产量的影响 [J]. 南方农业学报, 2015, 46(8):1396−1400. doi: 10.3969/j:issn.2095-1191.2015.08.1396PENG H H, LIU Q, RONG X M, et al. Effects of biochar, organic fertilizer and chemical fertilizer combined application on nutrient utilization and yield of spring maize [J]. Journal of Southern Agriculture, 2015, 46(8): 1396−1400.(in Chinese) doi: 10.3969/j:issn.2095-1191.2015.08.1396 [26] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展 [J]. 地球科学进展, 2014, 29(1):68−79. doi: 10.11867/j.issn.1001-8166.2014.01-0068WU Y, XU G, LÜ Y C, et al. Effects of biochar amendment on soil physical and chemical properties: Current status and knowledge gaps [J]. Advances in Earth Science, 2014, 29(1): 68−79.(in Chinese) doi: 10.11867/j.issn.1001-8166.2014.01-0068 [27] 刘铭龙, 刘晓雨, 潘根兴. 生物质炭对植物表型及其相关基因表达影响的研究进展 [J]. 植物营养与肥料学报, 2017, 23(3):789−798. doi: 10.11674/zwyf.16309LIU M L, LIU X Y, PAN G X. Advance in effect of biochar on plant phenotype and gene expression [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 789−798.(in Chinese) doi: 10.11674/zwyf.16309 [28] 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态 [J]. 农业工程学报, 2011, 27(2):1−7.HE X S, GENG Z C, SHE D, et al. Implications of production and agricultural utilization of biochar and its international dynamic [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 1−7.(in Chinese) [29] KAMMANN C I, LINSEL S, GÖßLING J W, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations [J]. Plant and Soil, 2011, 345(1): 195−210. [30] 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响 [J]. 生态与农村环境学报, 2012, 28(3):288−293. doi: 10.3969/j.issn.1673-4831.2012.03.012QU J J, ZHENG J W, ZHENG J F, et al. Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice [J]. Journal of Ecology and Rural Environment, 2012, 28(3): 288−293.(in Chinese) doi: 10.3969/j.issn.1673-4831.2012.03.012 [31] 杨浩鹏, 李飞跃, 索改弟, 等. 生物炭配施化肥对土壤理化性质、氮素利用率和玉米产量的影响 [J]. 安徽科技学院学报, 2020, 34(6):53−58. doi: 10.19608/j.cnki.1673-8772.2017.0805YANG H P, LI F Y, SUO G D, et al. Effects of biochar combined with chemical fertilizers on soil properties, nitrogen use efficiency and maize yield [J]. Journal of Anhui Science and Technology University, 2020, 34(6): 53−58.(in Chinese) doi: 10.19608/j.cnki.1673-8772.2017.0805 [32] 张爱平, 刘汝亮, 高霁, 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响 [J]. 植物营养与肥料学报, 2015, 21(5):1352−1360. doi: 10.11674/zwyf.2015.0531ZHANG A P, LIU R L, GAO J, et al. Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia Yellow River irrigation region [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1352−1360.(in Chinese) doi: 10.11674/zwyf.2015.0531 [33] SONG X Z, PAN G X, ZHANG C, et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis [J]. Ecosystem Health and Sustainability, 2016, 2(2): e01202. doi: 10.1002/ehs2.1202 [34] 王耀锋, 刘玉学, 吕豪豪, 等. 水洗生物炭配施化肥对水稻产量及养分吸收的影响 [J]. 植物营养与肥料学报, 2015, 21(4):1049−1055. doi: 10.11674/zwyf.2015.0425WANG Y F, LIU Y X, LÜ H H, et al. Effect of washing biochar and chemical fertilizers on rice yield and nutrient uptake [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 1049−1055.(in Chinese) doi: 10.11674/zwyf.2015.0425 [35] 向伟, 王雷, 刘天奇, 等. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响 [J]. 中国农业科学, 2020, 53(22):4634−4645. doi: 10.3864/j.issn.0578-1752.2020.22.010XIANG W, WANG L, LIU T Q, et al. Effects of biochar plus inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634−4645.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.22.010