• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TOR抑制剂雷帕霉素对荔枝霜疫霉生长发育及自噬的影响

吕林 杨成东 张雪 于戈 陈泰旭 陈庆河

吕林,杨成东,张雪,等. TOR抑制剂雷帕霉素对荔枝霜疫霉生长发育及自噬的影响 [J]. 福建农业学报,2022,37(11):1448−1453 doi: 10.19303/j.issn.1008-0384.2022.011.010
引用本文: 吕林,杨成东,张雪,等. TOR抑制剂雷帕霉素对荔枝霜疫霉生长发育及自噬的影响 [J]. 福建农业学报,2022,37(11):1448−1453 doi: 10.19303/j.issn.1008-0384.2022.011.010
LV L, YANG C D, ZHANG X, et al. Effect of TOR Inhibitor Rapamycin on Growth, Development, and Autophagy of Peronophythora litchii [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1448−1453 doi: 10.19303/j.issn.1008-0384.2022.011.010
Citation: LV L, YANG C D, ZHANG X, et al. Effect of TOR Inhibitor Rapamycin on Growth, Development, and Autophagy of Peronophythora litchii [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1448−1453 doi: 10.19303/j.issn.1008-0384.2022.011.010

TOR抑制剂雷帕霉素对荔枝霜疫霉生长发育及自噬的影响

doi: 10.19303/j.issn.1008-0384.2022.011.010
基金项目: 国家自然科学基金项目(32160614);海南省自然科学基金创新团队项目(321CXTD437);福建省作物有害生物监测与治理重点实验室开放基金(MIMCP-202102);海南大学科研启动基金项目 [KYQD(ZR)-20080]
详细信息
    作者简介:

    吕林(1998−),男,硕士研究生,主要从事疫霉菌基因功能研究(E-mail:1220969543@qq.com

    通讯作者:

    陈庆河(1971−),男,博士,研究员,主要从事作物卵菌病害研究(E-mail:qhchen@hainanu.edu.cn

  • 中图分类号: S 436

Effect of TOR Inhibitor Rapamycin on Growth, Development, and Autophagy of Peronophythora litchii

  • 摘要:   目的  明确TOR(Target of Rapamycin)信号通路抑制剂雷帕霉素对荔枝霜疫霉生长发育、致病性及自噬的影响。  方法  采用不同浓度的TOR抑制剂雷帕霉素处理荔枝霜疫霉菌,观察不同浓度雷帕霉素对荔枝霜疫霉的菌丝生长及形态、孢子囊产生数量、游动孢子释放和致病性的影响,并通过丹酰戊二胺(MDC)染色观察细胞自噬。  结果  雷帕霉素处理后,荔枝霜疫霉的菌丝生长明显受到抑制,半最大效应浓度(EC50)值为29.18 ng·mL−1,随着雷帕霉素浓度的增加,菌丝生长抑制不同程度增加;当雷帕霉素深度为25.0 ng·mL−1时,菌落生长抑菌率为45.3%,孢子囊产生数量为8.0×104 个·mL−1,仅为对照组的27.9%;雷帕霉素处理能促进游动孢子的释放;同时严重影响荔枝霜疫霉菌的致病性。通过自噬体观察表明,雷帕霉素处理后荔枝霜疫霉菌丝中自噬体的数量显著增加,促进荔枝霜疫霉的细胞自噬。  结论  TOR抑制剂雷帕霉素通过调控荔枝霜疫霉的细胞自噬,从而影响病菌的生长发育及致病性,研究结果为荔枝霜疫霉的致病机制提供科学依据。
  • 图  1  雷帕霉素对荔枝霜疫霉生长的影响

    ①A:不同浓度雷帕霉素处理后荔枝霜疫霉的生长情况;B:不同含量雷帕霉素处理后荔枝霜疫霉影响的菌落直径。②a:CK,b:DMSO,c~f分别表示雷帕霉素含量为12.5、25、50、100 ng·mL−1。③图中数据为平均数±标准差,**表示经单因素方差分析法检验在P<0.01水平差异显著,图24同。

    Figure  1.  Effect of rapamycin on growth of P. Litchii

    ①A: Growth of P. litchii as affected by rapamycin dosages; B: Colony diameter of P. litchii treated by varied rapamycin dosages. ②a:CK,b:DMSO,c~f respectively represent rapamycin content 12.5、25、50、100 ng·mL−1。③Data are mean±SE; ** indicates significant difference at P<0.01 by one-way ANOVA; same for Figs. 2-4.

    图  2  雷帕霉素对荔枝霜疫霉产孢的影响

    ①A:雷帕霉素处理后荔枝霜疫霉孢子囊数量的显微观察;B:雷帕霉素处理后荔枝霜疫霉孢子囊数量。②a:CK,b:DMSO,c:25 ng·mL−1雷帕霉素处理,图3同。

    Figure  2.  Effect of rapamycin on production of P. litchii sporangia

    ①A: Rapamycin-treated P. litchii sporangia under microscope; B: sporangia count.②a:CK,b:DMSO,c:25 ng·mL−1 Rapamycin treatment, same for Figs. 3.

    图  3  雷帕霉素对荔枝霜疫霉游动孢子释放的影响

    A:雷帕霉素处理后荔枝霜疫霉游动孢子释放的显微观察;B:雷帕霉素处理后荔枝霜疫霉游动孢子释放率。

    Figure  3.  Effect of rapamycin on release of P. litchii zoospores

    A: Release of rapamycin-treated P. litchii zoospore under microscope; B: rate of zoospore release.

    图  4  雷帕霉素对荔枝霜疫霉致病性的影响

    ①A:雷帕霉素处理的荔枝霜疫霉叶片致病性;B:荔枝叶片处理病斑面积比例;C:雷帕霉素处理的荔枝霜疫霉果实致病性;D:荔枝果实处理病斑面积比例。②a:CK,b:DMSO,c:25 ng·mL−1,MOCK:空白对照。

    Figure  4.  Effect of rapamycin on pathogenicity of P. litchii

    ①A: Pathogenicity of rapamycin-treated P. litchii on lychee leaf; B: proportion of lesion area on lychee leaf; C: pathogenicity of rapamycin-treated P. litchii on lychee fruit; D: proportion of lesion area on lychee fruit.②a:CK,b:DMSO,c:25 ng·mL−1,MOCK:Blank control。

    图  5  雷帕霉素诱导荔枝霜疫霉自噬体的形成

    ①a:CK,b:DMSO,c:50 ng·mL−1雷帕霉素处理。②BF:明场,MDC:荧光观察,Merged:合并图像。

    Figure  5.  Autophagosome formation of P. litchii in response to rapamycin treatment

    ①a:CK,b:DMSO,c:50 ng·mL−1 Rapamycin treatment.②BF:Bright field,MDC:Fluorescence observation,Merged:Merge images。

  • [1] 蔡学清, 林娜, 陈炜, 等. 荔枝霜疫霉的生物学特性 [J]. 热带作物学报, 2009, 30(9):1226−1231. doi: 10.3969/j.issn.1000-2561.2009.09.002

    CAI X Q, LIN N, CHEN W, et al. Biological characterisitics of Peronophthora litchii [J]. Chinese Journal of Tropical Crops, 2009, 30(9): 1226−1231.(in Chinese) doi: 10.3969/j.issn.1000-2561.2009.09.002
    [2] 孔广辉, 冯迪南, 李雯, 等. 荔枝霜疫病的研究进展 [J]. 果树学报, 2021, 38(4):603−612.

    KONG G H, FENG D N, LI W, et al. Research progress in studies on the downy blight disease in litchi [J]. Journal of Fruit Science, 2021, 38(4): 603−612.(in Chinese)
    [3] 杨德东. 荔枝霜疫霉病的发生与防控 [J]. 中国热带农业, 2015, 65(4):58−59. doi: 10.3969/j.issn.1673-0658.2015.04.016

    YANG D D. Occurrence and control of Peronophythora lichii [J]. China Tropical Agriculture, 2015, 65(4): 58−59.(in Chinese) doi: 10.3969/j.issn.1673-0658.2015.04.016
    [4] WANG H, SUN H, STAMMLER G, et al. Generation and characterization of isolates of Peronophythora litchii resistant to carboxylic acid amide fungicides [J]. Phytopathology, 2010, 100(5): 522−527. doi: 10.1094/PHYTO-100-5-0522
    [5] WEN X, KLIONSKY D J. An overview of macroautophagy in yeast [J]. Journal of Molecular Biology, 2016, 428: 1681−1699. doi: 10.1016/j.jmb.2016.02.021
    [6] REGGIORI F, KLIONSKY D J. Autophagic processes in yeast: Mechanism, machinery and regulation [J]. Genetics, 2013, 194(2): 341−361. doi: 10.1534/genetics.112.149013
    [7] WULLSCHLEGER S, LOEWITH R, HALL M N. TOR signaling in growth and metabolism [J]. Cell, 2006, 124(3): 471−484. doi: 10.1016/j.cell.2006.01.016
    [8] NODA T. Regulation of autophagy through TORC1 and mTORC1 [J]. Biomolecules, 2017, 7(3): E52.
    [9] KIM Y C, GUAN K L. mTOR: A pharmacologic target for autophagy regulation [J]. The Journal of Clinical Investigation, 2015, 125(1): 25−32. doi: 10.1172/JCI73939
    [10] ZHU X M, LI L, WU M, et al. Current opinions on autophagy in pathogenicity of fungi [J]. Virulence, 2019, 10(1): 481−489. doi: 10.1080/21505594.2018.1551011
    [11] KASAHARA K. Physiological function of FKBP12, a primary target of rapamycin/FK506: a newly identified role in transcription of ribosomal protein genes in yeast [J]. Current Genetics, 2021, 67(3): 383−388. doi: 10.1007/s00294-020-01142-3
    [12] LI L, ZHU T, SONG Y, et al. Target of rapamycin controls hyphal growth and pathogenicity through FoTIP4 in Fusarium oxysporum [J]. Molecular Plant Pathology, 2021, 22(10): 1239−1255. doi: 10.1111/mpp.13108
    [13] BALDAUF S L, ROGER A J, WENK-SIEFERT I, et al. A Kingdom-level phylogeny of eukaryotes based on combined protein data [J]. Science, 2000, 290(5493): 972−977. doi: 10.1126/science.290.5493.972
    [14] JIANG L, SITU J, DENG Y Z, et al. PlMAPK10, a mitogen-activated protein kinase (MAPK) in Peronophythora litchii, is required for mycelial growth, sporulation, laccase activity, and plant infection [J]. Frontiers in Microbiology, 2018, 9: 426. doi: 10.3389/fmicb.2018.00426
    [15] STEWART E L, HAGERTY C H, MIKABERIDZE A, et al. An improved method for measuring quantitative resistance to the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis [J]. Phytopathology, 2016, 106(7): 782−788. doi: 10.1094/PHYTO-01-16-0018-R
    [16] LUO Q, WANG F X, ZHONG N Q, et al. The role of autophagy during development of the oomycete pathogen Phytophthora infestans [J]. Journal of Genetics and Genomics, 2014, 41(4): 225−228. doi: 10.1016/j.jgg.2014.03.004
    [17] SAXTON R A, SABATINI D M. mTOR Signaling in growth, metabolism, and disease [J]. Cell, 2017, 168(6): 960−976. doi: 10.1016/j.cell.2017.02.004
    [18] 朱书生, 卢晓红, 陈磊, 等. 羧酸酰胺类(CAAs)杀菌剂研究进展 [J]. 农药学学报, 2010, 12(1):1−12. doi: 10.3969/j.issn.1008-7303.2010.01.01

    ZHU S S, LU X H, CHEN L, et al. Research advances in carboxylic acid amide fungicides [J]. Chinese Journal of Pesticide Science, 2010, 12(1): 1−12.(in Chinese) doi: 10.3969/j.issn.1008-7303.2010.01.01
    [19] IADEVAIA V, LIU R, PROUD C G. mTORC1 signaling controls multiple steps in ribosome biogenesis [J]. Seminars in Cell & Developmental Biology, 2014, 36: 113−120.
    [20] CORNU M, ALBERT V, HALL M N. mTOR in aging, metabolism, and cancer [J]. Current Opinion in Genetics & Development, 2013, 23(1): 53−62.
    [21] XIONG F, LIU M, ZHUO F, et al. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould [J]. Molecular Plant Pathology, 2019, 20(12): 1722−1739. doi: 10.1111/mpp.12873
    [22] YU F, GU Q, YUN Y, et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum [J]. New Phytologist, 2014, 203(1): 219−232. doi: 10.1111/nph.12776
    [23] 魏宁, 赵玉兰, 田菲菲, 等. TOR途径对玉米大斑病菌发育调控作用的研究 [J]. 植物病理学报, 2019, 49(3):391−398.

    WEI N, ZHAO Y L, TIAN F F, et al. Regulatory effect of TOR signal pathway on the development of Setosphaeria turcica [J]. Acta Phytopathologica Sinica, 2019, 49(3): 391−398.(in Chinese)
    [24] ZHANG S, KHALID A R, GUO D, et al. TOR inhibitors synergistically suppress the growth and development of Phytophthora infestans, a highly destructive pathogenic oomycete [J]. Frontiers in Microbiology, 2021, 12: 596874. doi: 10.3389/fmicb.2021.596874
  • 加载中
图(5)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  230
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-09-12
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回