Duplex TaqMan qPCR for Detecting Porcine Epidemic Diarrhea and Transmissible Gastroenteritis Viruses and Epidemic Study in Fujian
-
摘要:
目的 实现猪流行性腹泻病毒(PEDV)和猪传染性胃肠炎病毒(TGEV)的快速鉴别诊断,并调查分析福建省2019–2021年PEDV和TGEV流行情况。 方法 根据PEDV的N 基因和TGEV的S 基因序列分别设计特异性引物和标记FAM、VIC荧光报告基团的探针,建立、优化双重荧光定量PCR反应条件和体系,并检测其敏感性、特异性和重复性。应用该方法对福建省2019–2021年收集的297份疑似腹泻病料进行病原检测。 结果 建立的方法对PEDV和TGEV的最低检测限均为10拷贝·μL−1,比普通PCR检测灵敏度提高100倍;对其他常见猪病原不发生非特异性反应;批内、批间变异系数均小于1%。福建省297份临床样本检测结果显示,单PEDV感染率为88.89%,单TGEV感染率为1.01%,PEDV和TGEV混合感染率为3.37%。 结论 本研究建立的方法具有敏感性高、特异性强、稳定性好等特点。福建省内2019–2021年以PEDV感染为主,TGEV感染率低,存在PEDV、TGEV混合感染的情况。 Abstract:Objective A TaqMan probe-based duplex real-time PCR for rapid detection of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) was developed. A study was conducted using the methodology to analyze the related 2019–2021 epidemic occurred in Fujian. Method Specific primers and probes labeled with FAM and VIC were designed to amplify the N gene of PEDV and the S gene of TGEV, respectively. A reaction system for the assay was established, optimized, and tested for sensitivity, specificity, and repeatability. The assay was used for the viral detection on 297 suspected clinic specimens collected from 2019 to 2021 for an epidemiology study. Result The newly developed duplex qPCR methodology showed a sensitivity of 10 copies·μL−1 on PEDV and TGEV, which was 100 times higher than that of regular PCR. There were no cross reactions with other common viruses. The inter- and intra-assays had variations on Ct values below 1%. On the 297 specimens, the infection rate of PEDV was 88.89%, that of TGEV 1.01%, and that of both PEDV and TGEV 3.37%. Conclusion The established duplex qPCR had high sensitivity, specificity, repeatability, and reproducibility for detecting PEDV and TGEV. The 2019–2021 epidemic involving the viruses appeared to be mostly PEDV with low incidents of mixed TGEV and PEDV/TGEV infection. -
图 5 PEDV和TGEV普通PCR体系敏感性检测
M:Marker DL2000;1–6分别为PEDV质粒浓度1×106 ~ 1×101拷贝·μL−1;8–13分别为TGEV质粒浓度1×106 ~ 1×101拷贝·μL−1,7和14为阴性对照。
Figure 5. Sensitivity of regular PCR for PEDV and TGEV
M: Marker DL2000; PEDV (1-6) and TGEV (8-13) with numbers of copies of 1×106, 1×105, 1×104, 1×103, 1×102, and 1×101; 7 and 14: negative.
表 1 PEDV、TGEV双重荧光定量PCR引物及探针序列
Table 1. Primers and probes of PEDV and TGEV for qPCR
病毒
Virus引物名称
Primer序列(5'- 3')
Sequence (5'- 3')片段大小
Amplified fragment/bp猪流行性腹泻病毒
PEDVPEDV-F CTCCCGAGTGTAGTTGAGATTG 175 PEDV-R CTCCACGACCCTGGTTATTT PEDV-P FAM–CAACCCAACACACCTCCTACTTCACG-BHQ1 传染性胃肠炎病毒
TGEVTGEV-F TGAGGGTGCTGGCTTTGAT 149 TGEV-R CAAGAGTGACACCACCCGTT TGEV-P VIC-CACTGTGGCACCCTTAC
CTGATTGT-BHQ1表 2 疑似腹泻病料收集的来源信息
Table 2. Information on collection of suspected diseased tissues
地区
Region样本数(份)/来源猪场(个)
Samples/ Farms2019年 2020年 2021年 福州 Fuzhou 7/2 25/6 28/19 宁德 Ningde 5/3 15/6 24/13 泉州 Quanzhou 3/2 12/4 21/18 漳州 Zhangzhou 4/3 13/5 18/17 南平 Nanping 7/5 15/7 26/19 三明 Sanming 6/4 11/8 17/12 龙岩 Longyan 3/2 14/12 23/11 合计 Total 35/21 105/48 157/109 表 3 PEDV和TGEV双重荧光定量PCR重复性试验
Table 3. Repeatability and stability of duplex qPCR on PEDV and TGEV detections
质粒 Plasmid 浓度Concentration/
(拷贝·μL−1)组内变异试验 Intra-assay variability 组间变异系数 Inter-assay variability 平均数$\overline { X} $±SD 变异系数
CV/%平均数$\overline { X} $±SD 变异系数
CV/%T-PEDV 1.0×102 31.57±0.22 0.69 31.50±0.30 0.93 1.0×103 28.46±0.13 0.45 28.35±0.2 0.71 1.0×104 25.44±0.11 0.45 25.31±0.19 0.75 T-TGEV 1.0×102 32.06±0.28 0.87 31.83±0.33 0.96 1.0×103 28.87±0.11 0.38 28.36±0.19 0.69 1.0×104 25.82±0.16 0.62 25.39±0.23 0.91 表 4 临床样品检测结果
Table 4. Test results on clinical specimens
检测结果 Test results 猪流行性腹泻病毒PEDV 猪传染性胃肠炎病毒TGEV 猪流行性腹泻病毒+猪传染性胃肠炎病毒PEDV+TGEV 样本阳性率 Rate of positive samples/% 88.89 (264/297) 1.01 (3/297) 3.37 (10/297) 病毒拷贝数 Virus copies 1.8×102~6.5×107 3.3×103~7.5×106 1.5×102~7.5×105 阳性猪场比例 Rate of positive farms/% 61.24 (109/178) 1.12 (2/178) 2.81 (5/178) -
[1] ZHANG B, TANG C, YUE H, et al. Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China [J]. The Journal of General Virology, 2014, 95(Pt7): 1603−1611. [2] SUN R Q, CAI R J, CHEN Y Q, et al. Outbreak of porcine epidemic diarrhea in suckling piglets, China [J]. Emerging Infectious Diseases, 2012, 18(1): 161−163. doi: 10.3201/eid1801.111259 [3] WHITWORTH K M, ROWLAND R R R, PETROVAN V, et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs [J]. Transgenic Research, 2019, 28(1): 21−32. doi: 10.1007/s11248-018-0100-3 [4] LI W T, LI H, LIU Y B, et al. New variants of porcine epidemic diarrhea virus, China, 2011 [J]. Emerging Infectious Diseases, 2012, 18(8): 1350−1353. doi: 10.3201/eid1803.120002 [5] YUAN X M, LIN H X, LI B, et al. Efficacy and immunogenicity of recombinant swinepox virus expressing the truncated S protein of a novel isolate of porcine epidemic diarrhea virus [J]. Archives of Virology, 2017, 162(12): 3779−3789. doi: 10.1007/s00705-017-3548-1 [6] STEVENSON G W, HOANG H, SCHWARTZ K J, et al. Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences [J]. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 2013, 25(5): 649−654. doi: 10.1177/1040638713501675 [7] DIEL D G, LAWSON S, OKDA F et al. Porcine epidemic diarrhea virus: An overview of current virological and serological diagnostic methods [J]. Virus Research, 2016, 226: 60−70. doi: 10.1016/j.virusres.2016.05.013 [8] HIGGINS J A, EZZELL J, HINNEBUSCH B J, et al. 5' nuclease PCR assay to detect Yersinia pestis [J]. Journal of Clinical Microbiology, 1998, 36(8): 2284−2288. doi: 10.1128/JCM.36.8.2284-2288.1998 [9] WANG J C, WANG J F, CHEN P, et al. Development of a TaqMan-based real-time PCR assay for rapid and specific detection of fowl aviadenovirus serotype 4 [J]. Avian Pathology, 2017, 46(3): 338−343. doi: 10.1080/03079457.2016.1278428 [10] 李波, 蒋慧娴, 杨瑾, 等. 荧光定量PCR检测技术在动物检疫中的应用进展 [J]. 食品安全导刊, 2021(26):152,154.LI B, JIANG H X, YANG J, et al. Application progress of quantitative PCR detection technology in animal quarantine [J]. China Food Safety Magazine, 2021(26): 152,154.(in Chinese) [11] 高鑫, 朱武洋, 卢学新. 实时荧光定量PCR在病毒检测中的应用 [J]. 中国人兽共患病学报, 2018, 34(7):660−667. doi: 10.3969/j.issn.1002-2694.2018.00.105GAO X, ZHU W Y, LU X X. Real-time polymerase chain reaction in detection of viral pathogen [J]. Chinese Journal of Zoonoses, 2018, 34(7): 660−667.(in Chinese) doi: 10.3969/j.issn.1002-2694.2018.00.105 [12] 曾宪煜, 陈秋勇, 王隆柏, 等. 2012–2018年福建省猪病毒性腹泻流行情况 [J]. 福建畜牧兽医, 2020, 42(3):11−14. doi: 10.3969/j.issn.1003-4331.2020.03.005ZENG X Y, CHEN Q Y, WANG L B, et al. The epidemiological analysis of porcine viral diarrhea in Fujian Province in 2012–2018 [J]. Fujian Journal of Animal Husbandry and Veterinary Medicine, 2020, 42(3): 11−14.(in Chinese) doi: 10.3969/j.issn.1003-4331.2020.03.005 [13] ZHU Y, LIANG L, LUO Y K, et al. A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens [J]. Virus Genes, 2017, 53(1): 71−76. doi: 10.1007/s11262-016-1405-z [14] MENG F D, REN Y D, SUO S, et al. Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing spike genes from porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus [J]. PLoS One, 2013, 8(3): e57468. doi: 10.1371/journal.pone.0057468 [15] GONZÁLEZ J M, GOMEZ-PUERTAS P, CAVANAGH D, et al. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae [J]. Archives of Virology, 2003, 148(11): 2207−2235. doi: 10.1007/s00705-003-0162-1 [16] JUNG K, WANG Q H, SCHEUER K A, et al. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs [J]. Emerging Infectious Diseases, 2014, 20(4): 662−665. [17] KIM S Y, SONG D S, PARK B K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR [J]. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 2001, 13(6): 516−520. doi: 10.1177/104063870101300611 [18] KLEIBOEKER S B, SCHOMMER S K, LEE S M, et al. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR [J]. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 2005, 17(2): 165−170. doi: 10.1177/104063870501700211 [19] 胡鸿惠, 南文金, 黄健强, 等. 猪流行性腹泻病毒和猪传染性胃肠炎病毒一步法双重RT-PCR检测方法的建立与应用 [J]. 中国畜牧兽医, 2016, 43(9):2279−2284.HU H H, NAN W J, HUANG J Q, et al. Establishment and application of a double RT-PCR method for detection of PEDV and TGEV [J]. China Animal Husbandry & Veterinary Medicine, 2016, 43(9): 2279−2284.(in Chinese) [20] KONG F Z, XU Y R, RAN W, et al. Cold exposure-induced up-regulation of Hsp70 positively regulates PEDV mRNA synthesis and protein expression In vitro [J]. Pathogens (Basel, Switzerland), 2020, 9(4): 246. [21] ALONSO C, GOEDE D P, MORRISON R B, et al. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds [J]. Veterinary Research, 2014, 45(1): 73. doi: 10.1186/s13567-014-0073-z