Temporal and Spatial Distributions and Controlling Factors of Hydrochemistry at Wuyishan National Park Water Body
-
摘要:
目的 分析武夷山国家公园九曲溪水体主要阴、阳离子的含量变化,揭示该区域地表水水化学时空分布特征、作用机制和岩性控制类型。 方法 采集不同水文期及河流段的30份地表水样品,测试主要化学离子组分含量,利用吉布斯图、三角图和端元图进行水化学的作用机制和岩性类型分析,并以主成因分析和模型计算量化水化学物质的来源贡献。 结果 九曲溪水体呈弱酸性,总溶解固体(TDS)的平均值为25.30 mg·L−1(远低于世界河流的平均值100.00 mg·L−1),主要阳离子含量的大小顺序为Ca2+>Na+>K+>Mg2+,主要阴离子含量 ${\rm{HCO}}_3^- $ >Cl−>${\rm{NO}}_3^- $ >${\rm{SO}}_4^{2-}$ 。不同水文期对比而言,该流域水体TDS及大多数主要离子浓度呈现出枯水期>平水期>丰水期;不同河流段对比,TDS及主要离子浓度从上游到下游整体呈现上升趋势。结论 武夷山国家公园九曲溪水化学类型为 ${\rm{HCO}}_3^- $ -Ca2++Na+型,作用机制以岩石风化为主,一定程度受大气降水和人为活动的影响。其中,岩石风化对上游河段的水化学组成影响小于中下游;大气降水对丰水期的水化学作用大于其他水文期。同时,研究区水化学的岩性控制类型以碳酸岩和硅酸岩的风化作用为主,两者对水化学物质的贡献率为58.82%。Abstract:Objective Contents of major anions and cations in the Jiuquxi River at the Wuyishan National Park were analyzed to unveil the spatial and temporal distributions, action mechanism, and lithological control of the surface water. Method Thirty water samples from different river sections were collected at different hydrological periods for chemical determination. Gibbs, triangle, and endmember diagrams were applied to analyze the hydrochemical mechanism and lithological control. Principal component analysis and model calculation were applied to quantify the hydrochemical contributions. Result The river water was weakly acidic with an average total dissolved solids (TDS) of 25.30 mg·L−1, which was well below the world average of 100.00 mg·L−1. The contents of major cations in the water ranked in the order of Ca2+>Na+>K+>Mg2+, while that of anions HCO3−>Cl−>NO3−>SO42−. In different hydrological periods, TDS and most of the ions were dry period>normal period>wet period and increased from upstream to downstream of the river. Conclusion The hydrochemistry of Jiuquxi water in the national park was HCO3−-Ca2++Na+ type and, basically, of a rock weathering action mechanism that affected by precipitation, and to a certain extent, human activities. The rock weathering altered the hydrochemistry more on the upper reach than the middle or lower reach of the river. Precipitation affected the hydrochemistry most greatly in wet season. The lithological control on the area waters was largely weathering of carbonate and silicate rocks that contributed 58.82% of the controlling factors of the hydrochemistry. -
表 1 九曲溪水化学主要离子组成
Table 1. Composition of major ions in Jiuquxi River water
(单位:mg·L−1) 特征值
Characteristic valuepH TDS Ca2+ Mg2+ Na+ K+ $\mathrm{HCO}_3^{-} $ $ \mathrm{NO}_3^{-}$ $\mathrm{SO}_4^{2-} $ Cl− 最小值 Min. 5.42 15.00 0.70 0.08 0.45 0.37 6.10 0.71 0.60 1.26 平均值 Avg. 5.92 25.30 1.66 0.35 1.16 0.69 13.41 1.89 1.29 1.93 最大值 Max. 6.71 41.00 4.05 1.26 2.59 1.35 26.15 4.77 3.04 3.20 标准差 SD 0.34 7.23 0.89 0.29 0.46 0.27 4.66 0.95 0.55 0.54 变异系数 CV/% 5.72 28.57 53.90 82.28 39.24 39.01 34.76 50.14 42.39 27.97 表 2 九曲溪水化学主成分分析的因子载荷
Table 2. Component loadings of principal components Jiuquxi hydrochemistry
变量
Variate因子1
Factor 1因子2
Factor 2因子3
Factor 3公共性方差
Publicity of varianceCa2+ 0.386 0.448 0.774 0.912 K+ 0.084 0.388 0.902 0.958 Mg2+ 0.312 0.776 0.423 0.847 Na+ 0.104 0.854 0.372 0.876 Si −0.191 0.923 0.126 0.854 $\mathrm{HCO}_3^{-} $ 0.852 0.407 0.100 0.897 Cl− 0.901 −0.144 0.242 0.883 $\mathrm{NO}_3^{-} $ 0.307 0.584 0.609 0.764 $\mathrm{SO}_4^{2-} $ 0.380 0.574 0.729 0.963 表 3 九曲溪与其他流域水化学物质来源的比较
Table 3. Comparison on hydrochemistry of Jiuquxi River and rivers at other basins (单位:%)
-
[1] 李荐华, 郑芳文, 吴超, 等. 长江中下游典型硅酸盐岩流域自然风化与人类活动影响下的水化学特征: 以抚河流域为例 [J]. 地球与环境, 2021(4):347−357.LI J H, ZHENG F W, WU C, et al. Hydrochemical characteristics of river in a representative silicate rock region under natural weathering and anthropogenic activities—A case study of the Fuhe river in the middle and lower reaches of the Yangtze River [J]. Earth and Environment, 2021(4): 347−357.(in Chinese) [2] RAO W, ZHENG F, TAN H, et al. Major ion chemistry of a representative river in South-central China: Runoff effects and controlling mechanisms [J]. Journal of Hazardous Materials, 2019, 378: 120755. doi: 10.1016/j.jhazmat.2019.120755 [3] ROY S, GAILLARDET J, ALLÈGRE C J. Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering [J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1277−1292. doi: 10.1016/S0016-7037(99)00099-X [4] TIPPER E T, BICKLE M J, GALY A, et al. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry [J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2737−2754. doi: 10.1016/j.gca.2006.03.005 [5] HAGEDORN B, CARTWRIGHT I. Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: An example from the Australian Victorian Alps [J]. Chemical Geology, 2009, 260(3/4): 234−253. [6] 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因 [J]. 地质通报, 2010(2):446−456.WANG Y P, WANG L, XU C X, et al. Hydro-geochemistry and genesis of major ions in the Yangtze River, China [J]. Geological Bulletin of China, 2010(2): 446−456.(in Chinese) [7] 张旺, 王殿武, 雷坤, 等. 黄河中下游丰水期水化学特征及影响因素 [J]. 水土保持研究, 2020(1):380−386,393.ZHANG W, WANG D W, LEI K, et al. Hydrochemical characteristics and impact factors in the middle and lower reaches of the Yellow River in the wet season [J]. Research of Soil and Water Conservation, 2020(1): 380−386,393.(in Chinese) [8] 孙海龙, 刘再华, 杨睿, 等. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义 [J]. 地球与环境, 2017(1):57−65.SUN H L, LIU Z H, YANG R, et al. Spatial and seasonal variations of hydrochemistry of the peral river and implications for estimating the rock weathering-related carbon sink [J]. Earth and Environment, 2017(1): 57−65.(in Chinese) [9] 李甜甜, 季宏兵, 江用彬, 等. 赣江上游河流水化学的影响因素及DIC来源 [J]. 地理学报, 2007(7):764−775.LI T T, JI H B, JIANG Y B, et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River [J]. Acta Geographica Sinica, 2007(7): 764−775.(in Chinese) [10] 丁健, 周永章, 高全洲, 等. 广东韩江流域化学风化作用及大气CO2消耗的分析 [J]. 中山大学学报(自然科学版), 2013(3):117−127.DING J, ZHOU Y Z, GAO Q Z, et al. Chemical weathering processes and atmospheric CO2 consumption in the Hanjiang River Basin, Guangdong Province [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013(3): 117−127.(in Chinese) [11] 胡春华, 周文斌, 夏思奇. 鄱阳湖流域水化学主离子特征及其来源分析 [J]. 环境化学, 2011(9):1620−1626.HU C H, ZHOU W B, XIA S Q. Characteristics of major ions and the influence factors in Poyang Lake catchment [J]. Environmental Chemistry, 2011(9): 1620−1626.(in Chinese) [12] 蒙海花, 王腊春. 喀斯特流域水体中离子时空变化特征 [J]. 水资源保护, 2007(5):1−5,10.MENG H H, WANG L C. Spatial-temporal characteristics of the ions in Karst Basin [J]. Water Resources Protection, 2007(5): 1−5,10.(in Chinese) [13] 叶宏萌, 袁旭音, 葛敏霞, 等. 太湖北部流域水化学特征及其控制因素 [J]. 生态环境学报, 2010(1):23−27.YE H M, YUAN X Y, GE M X, et al. Water chemistry characteristics and controlling factors in the northern rivers in the Taihu Basin [J]. Ecology and Environmental Sciences, 2010(1): 23−27.(in Chinese) [14] 舒旺, 王鹏, 肖汉玉, 等. 鄱阳湖流域乐安河水化学特征及影响因素 [J]. 长江流域资源与环境, 2019(3):681−690.SHU W, WANG P, XIAO H Y, et al. Hydrochemical characteristics and influencing factors in the le'an river, Poyang Lake Basin [J]. Resources and Environment in the Yangtze Basin, 2019(3): 681−690.(in Chinese) [15] 王之豪. 福建省武夷新区地下水化学特征与成因分析[D]. 北京: 中国地质大学, 2019.WANG Z H. Chemical characteristics and genesis analysis of groundwater in Wuyi new area of Fujian Province[D]. Beijing: China University of Geosciences, 2019. (in Chinese) [16] 赵青, 刘爽, 陈燕菲, 等. 武夷山不同林龄甜槠林土壤呼吸特征及影响因素 [J]. 生态学报, 2021, 41(6):2326−2338.ZHAO Q, LIU S, CHEN Y F, et al. Soil respiration characteristics and influencing factors of Castanopsis eyrei forest in different forest ages in Wuyi Mountain [J]. Chinese Journal of Plant Ecology, 2021, 41(6): 2326−2338.(in Chinese) [17] 林森, 胡喜生, 吴承祯, 等. 武夷山国家公园植被覆盖演变的时空特征 [J]. 森林与环境学报, 2020(4):347−355.LIN S, HU X S, WU C Z, et al. Temporal-spatial features of vegetation cover in Mount Wuyi National Park [J]. Journal of Forest and Environment, 2020(4): 347−355.(in Chinese) [18] 葛晓敏, 卢晓强, 陈水飞, 等. 武夷山常绿阔叶林生态系统降水分配与离子输入特征 [J]. 生态环境学报, 2020(2):250−259.GE X M, LU X Q, CHEN S F, et al. Reallocation and chemical characteristics of atmospheric precipitation in A mid-subtropical evergreen broad-leaved forest in Wuyi mountains, Fujian Province, China [J]. Ecology and Environmental Sciences, 2020(2): 250−259.(in Chinese) [19] 廖程, 施泽明, 王德伟, 等. 四川安宁河流域水化学特征及物源探讨 [J]. 地球与环境, 2020(6):680−688.LIAO C, SHI Z M, WANG D W, et al. Water chemical characteristics and the substance provenance in Anning River Basin of Sichuan Province [J]. Earth and Environment, 2020(6): 680−688.(in Chinese) [20] 孙媛媛, 季宏兵, 罗建美, 等. 赣南小流域的水文地球化学特征和主要风化过程 [J]. 环境化学, 2006(5):550−557.SUN Y Y, JI H B, LUO J M, et al. Hydro-geochemistry and chemical weathering processes of small watersheds in the southern Jiangxi Province [J]. Environmental Chemistry, 2006(5): 550−557.(in Chinese) [21] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素 [J]. 环境科学, 2020(9):4003−4010.ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin [J]. Environmental Science, 2020(9): 4003−4010.(in Chinese) [22] 韩知明, 贾克力, 孙标, 等. 呼伦湖流域地表水与地下水离子组成特征及来源分析 [J]. 生态环境学报, 2018(4):744−751.HAN Z M, JIA K L, SUN B, et al. Component characteristics and sources of ions in surface water and groundwater of Hulun Lake Basin [J]. Ecology and Environmental Sciences, 2018(4): 744−751.(in Chinese) [23] 任丽红, 陈建华, 白志鹏, 等. 海南五指山和福建武夷山降水离子组成及来源 [J]. 环境科学研究, 2012(4):404−410.REN L H, CHEN J H, BAI Z P, et al. Ionic composition and source analysis of precipitation at Wuzhi Mountain in Hainan Province and Wuyi Mountain in Fujian Province [J]. Research of Environmental Sciences, 2012(4): 404−410.(in Chinese) [24] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/2/3/4): 3−30. [25] 罗寿泰, 黄祖亚. 闽江流域水资源质量时空变化的系统分析及应用研究 [J]. 水利科技, 2015(2):1−6.LUO S T, HUANG Z Y. Systematic analysis and applied study on spatio-temporal changes of water resources quality in Minjiang River basin [J]. Hydraulic Science and Technology, 2015(2): 1−6.(in Chinese) [26] 解晨骥, 高全洲, 陶贞. 流域化学风化与河流水化学研究综述与展望 [J]. 热带地理, 2012(4):331−337,356.XIE C J, GAO Q Z, TAO Z. Review and perspectives of the study on chemical weathering and hydrochemistry in river basin [J]. Tropical Geography, 2012(4): 331−337,356.(in Chinese) [27] 左禹政. 贵州省都柳江流域水化学特征分析及影响研究[D]. 贵阳: 贵州大学, 2017.ZUO Y Z. Analysis and influence of hydrochemical characteristics in Duliu River basin of Guizhou Province[D]. Guiyang: Guizhou University, 2017. (in Chinese) [28] AMIOTTE SUCHET P, PROBST J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2) [J]. Tellus B: Chemical and Physical Meteorology, 1995, 47(1/2): 273−280. [29] SUMMERFIELD M A, HULTON N J. Natural controls of fluvial denudation rates in major world drainage basins [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B7): 13871−13883. doi: 10.1029/94JB00715 [30] LI S, ZHANG Q. Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 205−213. [31] 安艳玲, 吕婕梅, 罗进, 等. 赤水河流域岩石化学风化及其对大气CO2的消耗 [J]. 地球科学进展, 2018, 33(2):179−188.AN Y L, LÜ J M, LUO J, et al. Chemical weathering and CO2 consumption of Chishuihe River basin, Guizhou Province [J]. Advances in Earth Science, 2018, 33(2): 179−188.(in Chinese) [32] 李晶莹. 中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究[D]. 青岛: 中国海洋大学, 2003.LI J Y. A study on the chemical weathering, mechanical denudation correlative with river water and sediment geochemistry and CO2 consumption budget and controlling factors in the major drainage basins of China[D]. Qingdao: Ocean University of China, 2003. (in Chinese) [33] SUCHET P A, PROBST J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins [J]. Chemical Geology, 1993, 107(3/4): 205−210. [34] 李丽纯, 周广胜. 武夷山国家公园森林植被对景区活动的响应 [J]. 生态学报, 2020, 40(20):7267−7276.LI L C, ZHOU G S. Response of forest vegetation to scenic activities in Wuyishan National Park [J]. Chinese Journal of Plant Ecology, 2020, 40(20): 7267−7276.(in Chinese) [35] SONG Z L, ZHAO S L, ZHANG Y Z, et al. Plant impact on CO2 consumption by silicate weathering: The role of bamboo [J]. The Botanical Review, 2011, 77(3): 208−213. doi: 10.1007/s12229-011-9077-9 [36] GROSBOIS C, NÉGREL P, FOUILLAC G C. An overview of dissolved and suspended matter fluxes in the Loire River basin: Natural and anthropogenic inputs [J]. Aquatic Geochemistry, 2001, 7(2): 81−105. doi: 10.1023/A:1017518831860