Optimization of Bacillus velezensis FJ17-4 Fermentation
-
摘要:
目的 贝莱斯芽孢杆菌FJ17-4对许多病原菌具有较强的抑制作用,为提高其生防作用,开展FJ17-4发酵技术研究。 方法 以发酵液的OD600值为评估指标,采用单因素和正交试验方法对发酵培养基和发酵条件进行筛选和优化,获得最佳发酵培养基和发酵条件后,进一步对优化后发酵液的菌体数、病原菌抑制率和室内盆栽防治效果进行测定和分析。 结果 菌株FJ17-4的最佳培养基配方为黄豆粉12.5 g·L−1、玉米粉5.0 g·L−1、K2HPO4 12.5 g·L−1,最佳发酵条件为:初始pH 7.0,培养温度30 ℃,装液量20% (50 mL/250 mL),接种量12.5%,转速180 r·min−1,发酵培养时间40 h。优化后发酵液的OD600值和菌体数量分别为1.52×1010、1.03×1010 cfu·mL−1,比优化前分别提高了25.62%和21.95%。50倍优化发酵液对病原菌菌丝生长抑制率和室内盆栽防治效果分别为42.35%和 72.14%,比优化前分别提高了56.38%和13.46%。 结论 优化后发酵培养基和发酵条件有效提高菌株FJ17-4的发酵效果,降低了发酵成本,研究结果为贝莱斯芽孢杆菌FJ17-4的开发和工业化生产及应用提供了理论依据。 Abstract:Objective Fermentation of Bacillus velezensis FJ17-4 known with a high inhibitory activity against several pathogens was optimized for potential application as a biocontrol agent. Methods Spectrometric measurement at OD600 of the fermentation broth was used as the index for evaluation. Culture medium and conditions were optimized by single factor and orthogonal experiments. Bacterial quantity, pathogenic inhibition, and indoor potted control effect of the optimized fermentation product were determined. Results The optimized FJ17-4 fermentation used a medium that consisted of 12.5 g·L−1 soybean meal, 5.0 g·L−1 corn flour, and 12.5 g·L−1 potassium dihydrogen phosphate at an initial pH of 7.0 to ferment a liquid loading (medium volume) of 50 mL with an inoculum size of 12.5% for 40 h at 30 ℃ in a 250 mL flask that rotated at a constant speed of 180 r·min−1. The OD600 of the optimized fermentation broth was 1.52 representing a cell load of 1.03×1010 cfu·mL−1, which were 25.62% and 21.95%, respectively, higher than those prior to the optimization. The inhibition rate on the mycelial growth of Fusarium oxysporum f. sp. cucumerinum and the indoor potted control on cucumber fusarium wilt of the 50× optimized fermentation broth were 42.35% and 72.14%, representing 56.38% and 13.46% increases, respectively, over the original. Conclusion The FJ17-4 fermentation was significantly improved by the optimization. An operational cost reduction was also achieved. -
Key words:
- Bacillus velezensis /
- culture medium /
- fermentation conditions /
- optimization
-
图 3 不同初始pH值、温度、接种量、装液量、转速和培养时间对菌株FJ17-4发酵的影响
A:初始pH,B:温度,C:接种量,D:装液量,E:转速,F:培养时间。
Figure 3. Effects of initial pH, temperature, inoculum concentration, liquid loading, rotating speed, and culture time on FJ17-4 fermentation
A: initial pH; B: temperature; C: inoculum size; D: liquid loading; E: rotating speed; F: culture time.
图 5 发酵液对黄瓜枯萎病的防治效果
A: 50倍优化发酵液;B:10倍优化发酵液;C:2000倍98%噁霉灵可溶粉剂;D:无菌水;E: 50倍基础培养基发酵液。
Figure 5. Control effects of fermentation broth on cucumber fusarium wilt
A: 50× optimized fermentation broth; B: 10× optimized fermentation broth; C: 2000×98% hymexazol soluble powder; D: sterile water; F: 50× original fermentation broth.
表 1 培养基组分的正交试验因素与水平
Table 1. Factors and levels of orthogonal test for culture medium formulation
水平
Level各因素含量
Content of each factor /(g·L−1)A:玉米粉
CornmealB:黄豆粉
Soybean flourC:K2HPO4 1 5.0 10.0 10.0 2 7.5 12.5 12.5 3 10.0 15.0 15.0 表 2 培养基各组分比优化的正交试验
Table 2. Orthogonal test on all factors of medium
处理
TreatmentsA:玉米粉
A: Cornmeal
/(g·L−1)B:黄豆粉
B: Soybean
flour /(g·L−1)C:K2HPO4
C: K2HPO4
/(g·L−1)OD600值
OD600
Value1 5.0 10.0 10.0 0.98±0.01 2 5.0 12.5 12.5 1.02±0.02 3 5.0 15.0 15.0 1.12±0.00 4 7.5 10.0 12.5 1.28±0.01 5 7.5 12.5 15.0 0.86±0.01 6 7.5 15.0 10.0 0.96±0.02 7 10.0 10.0 15.0 1.03±0.01 8 10.0 12.5 10.0 0.95±0.01 9 10.0 15.0 12.5 1.06±0.02 K1 3.12 3.36 2.98 K2 3.16 3.12 3.12 K3 2.86 2.99 3.05 R 0.30 0.37 0.14 重要性顺序
Order of importanceB>A>C 优水平
Optimal levelsA2 B1 C2 优组合
Optimal combinationA2 B1 C2 表 3 FJ17-4无菌滤液对黄瓜枯萎病菌菌丝生长的抑制效果
Table 3. Inhibitory effect of FJ17-4 cell-free fermentation filtrate on mycelial growth of Fusarium oxysporum f. sp. cucumerinum
处理
Treatments菌落直径
Colony
diameter/cm抑制效果
Inhibition
effect/%差异显著性
Difference significance
(P<0.05)10倍优化后无菌发酵滤液 10 times optimized sterile fermentation filtrate 4.90±0.38 42.35±2.13 a 10倍基础培养基(LB)无菌滤液 10 times sterile fermentation filtrate of basic medium (LB) 6.2±0.29 27.08±1.45 b 无菌水对照 Sterile water 8.50±0.46 / / 表 4 FJ17-4无菌滤液对黄瓜枯萎病菌分生孢子萌发的抑制效果
Table 4. Inhibitory effect of FJ17-4 cell-free fermentation filtrate on conidial germination of F. oxysporum f. sp. cucumerinum
处理
Treatments孢子萌发率
Spore germination
rate /%抑制效果
Inhibition
effect /%)差异显著性
Difference significance
(P<0.05)50倍优化后无菌发酵滤液 50 times optimized sterile fermentation filtrate 13.13±0.76 85.32±0.35 a 50倍基础培养基(LB)无菌滤液 50 times sterile fermentation filtrate of basic medium (LB) 14.82±1.03 83.43±1.44 a 100倍优化后无菌发酵滤液 100 times optimized sterile fermentation filtrate 22.14±1.41 75.26±0.24 b 100倍基础培养基(LB)无菌滤液 100 times sterile fermentation filtrate of basic medium (LB) 24.93±1.22 72.12±0.36 c 无菌水对照 Sterile water 89.42±2.43 / / 表 5 FJ17-4发酵液对黄瓜枯萎病的室内盆栽防治效果
Table 5. Control effect of FJ17-4 fermentation broth on cucumber fusarium wilt in potted experiment
处理
Treatments发病率
Incidence rate/%防治效果
Control effect /%差异显著性
Difference significance (P<0.05)10倍优化发酵液 10 times optimized fermentation broth 24.02±0.86 73.68±0.52 a 50倍优化发酵液 50 times optimized fermentation broth 24.51±1.12 72.14±0.36 b 50倍基础培养基发酵液 50 times basic medium fermentation broth 33.24±2.13 63.58±1.23 d 2000倍98%噁霉灵可溶粉剂 2000 times 98% hymexazol soluble powder 27.62±1.79 69.73±0.54 c 无菌水对照 Sterile water 91.26±3.26 / / -
[1] 黄曦, 许兰兰, 黄荣韶, 等. 枯草芽孢杆菌在抑制植物病原菌中的研究进展 [J]. 生物技术通报, 2010(1):24−29. doi: 10.13560/j.cnki.biotech.bull.1985.2010.01.026HUANG X, XU L L, HUANG R S, et al. Research advance in controlling plant disease by Bacillus subtilis [J]. Biotechnology Bulletin, 2010(1): 24−29.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2010.01.026 [2] KHALIL M S, HAIKAL N Z, HAFEZ E. Biological controls of cucumber wilt disease caused by Fusarium oxysporum [J]. Research Journal of Pharmaceutical Biological and Chemical Sciences, 2017, 8(6): 413−422. [3] RUIZ-GARCÌA C, BÉJAR V, MARTINEZ-CHECA F, et al. Bacillus velezensis sp. nov. a surfactant-producing bacterium isolated from the river Vélez in Málaga, souther Spain [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191−195. doi: 10.1099/ijs.0.63310-0 [4] 刘洋, 刘晓昆, 陈文浩. 贝莱斯芽孢杆菌(Bacillus velezensis)物种名称的“前世今生” [J]. 生物技术通报, 2019(7):230−232.LIU Y, LIU X K, CHEN W H. “past and present” species name of Bacillus velezensis [J]. Biotechnology Bulletin, 2019(7): 230−232.(in Chinese) [5] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力 [J]. 中国农业科学, 2019(11):1908−1917. doi: 10.3864/j.issn.0578-1752.2019.11.006SHA Y X, SUI S T, ZENG Q C, et al. Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases [J]. Scientia Agricultura Sinica, 2019(11): 1908−1917.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.11.006 [6] LUO W J, LIU L D, QI G F, et al. Embedding Bacillus velezensis NH-1 in microcapsules for biocontrol of cucumber Fusarium wilt [J]. Applied and Environmental Microbiology, 2019, 85(9): e03128−e03118. [7] YE M, TANG X, YANG R, et al. Characteristics and application of a novel species of Bacillus: Bacillus velezensis [J]. ACS Chemical Biology, 2018, 13(3): 500−505. doi: 10.1021/acschembio.7b00874 [8] 刘芳, 廖先清, 周荣华, 等. 响应面法优化贝莱斯芽孢杆菌CY30发酵培养基的研究 [J]. 湖北农业科学, 2019(23):91−94. doi: 10.14088/j.cnki.issn0439-8114.2019.23.021LIU F, LIAO X Q, ZHOU R H, et al. Study on optimization of fermentation medium of Bacillus velezensis CY30 by using response-surface method [J]. Hubei Agricultural Sciences, 2019(23): 91−94.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2019.23.021 [9] 杨可, 司文, 林海, 等. 利用响应面分析法优化贝莱斯芽孢杆菌TCS001的发酵条件 [J]. 农药学学报, 2019, 21(4):444−452. doi: 10.16801/j.issn.1008-7303.2019.0066YANG K, SI W, LIN H, et al. Fermentation condition optimization of Bacillus velezensis TCS001 using response surface methodology [J]. Chinese Journal of Pesticide Science, 2019, 21(4): 444−452.(in Chinese) doi: 10.16801/j.issn.1008-7303.2019.0066 [10] 黎燕珊, 崔文艳, 张陈芳, 等. 抗金银花白粉病菌贝莱斯芽孢杆菌HC-8菌株培养基及发酵条件优化 [J]. 南方农业学报, 2021, 52(8):2148−2157. doi: 10.3969/j.issn.2095-1191.2021.08.013LI Y S, CUI W Y, ZHANG C F, et al. Optimization of culture medium and fermentation parameters of Bacillus velezensis HC-8 antagonistic to Erysiphe lonicerae [J]. Journal of Southern Agriculture, 2021, 52(8): 2148−2157.(in Chinese) doi: 10.3969/j.issn.2095-1191.2021.08.013 [11] 张晓, 张艳军, 陈雨, 等. 嘧菌酯对番茄早疫病菌的抑制作用 [J]. 农药学学报, 2008, 10(1):41−46. doi: 10.3321/j.issn:1008-7303.2008.01.007ZHANG X, ZHANG Y J, CHEN Y, et al. Inhibitory effect of azoxystrobin on Alternaria solani [J]. Chinese Journal of Pesticide Science, 2008, 10(1): 41−46.(in Chinese) doi: 10.3321/j.issn:1008-7303.2008.01.007 [12] 韦巧婕, 郑新艳, 邓开英, 等. 黄瓜枯萎病拮抗菌的筛选鉴定及其生物防效 [J]. 南京农业大学学报, 2013, 36(1):40−46. doi: 10.7685/j.issn.1000-2030.2013.01.008WEI Q J, ZHENG X Y, DENG K Y, et al. Screening and identification of antagonistic Bacillus vallismoritis B against cucumber Fusarium wilt and its biological effect [J]. Journal of Nanjing Agricultural University, 2013, 36(1): 40−46.(in Chinese) doi: 10.7685/j.issn.1000-2030.2013.01.008 [13] 王朝恩, 刘婉慧, 陆蓝翔, 等. 短小芽孢杆菌HR10产孢培养基及发酵条件优化 [J]. 微生物学杂志, 2021, 41(2):37−45.WANG C E, LIU W H, LU L X, et al. Optimization of sporulation medium and fermentation conditions for Bacillus pumilus HR10 [J]. Journal of Microbiology, 2021, 41(2): 37−45.(in Chinese) [14] 赵鹏鹏, 雷淑珍, 徐晓光, 等. 培养基组成对贝莱斯芽孢杆菌产抑真菌成分的影响 [J]. 食品与发酵工业, 2020, 46(5):147−151. doi: 10.13995/j.cnki.11-1802/ts.022174ZHAO P P, LEI S Z, XU X G, et al. Effect of medium compositions on the production of antifungalcomponents by Bacillus velezensis [J]. Food and Fermentation Industries, 2020, 46(5): 147−151.(in Chinese) doi: 10.13995/j.cnki.11-1802/ts.022174 [15] 吴志美, 兰明先, 高熹, 等. 除草活性成团泛菌ZLSY20菌株发酵条件的优化 [J]. 南方农业学报, 2019, 50(9):1990−1997.WU Z M, LAN M X, GAO X, et al. Screening of fermentation conditions for herbicidal activity of Pantoea agglomerans strain ZLSY20 [J]. Journal of Southern Agriculture, 2019, 50(9): 1990−1997.(in Chinese) [16] 李姝江, 王淋敏, 谯天敏, 等. 利用响应面法优化贝莱斯芽孢杆菌ZJ20发酵参数 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(2):88−96. doi: 10.13207/j.cnki.jnwafu.2019.02.011LI S J, WANG L M, QIAO T M, et al. Optimization of Bacillus velezensis ZJ20 fermentation parameters by response surface methodology [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(2): 88−96.(in Chinese) doi: 10.13207/j.cnki.jnwafu.2019.02.011 [17] YUAN Q P, WANG J D, ZHANG H, et al. Effect of temperature shift on production of xylanase by Aspergillus niger [J]. Process Biochemistry, 2005, 40(10): 3255−3257. doi: 10.1016/j.procbio.2005.03.020 [18] 周洋子, 邱慧珍, 董莉, 等. 马铃薯疮痂病高效生防芽孢杆菌的筛选及发酵条件优化 [J]. 干旱地区农业研究, 2020, 38(5):259−267. doi: 10.7606/j.issn.1000-7601.2020.05.36ZHOU Y Z, QIU H Z, DONG L, et al. Screening of highly effective biocontrol Bacillus strains for potato scab and optimization of its fermentation conditions [J]. Agricultural Research in the Arid Areas, 2020, 38(5): 259−267.(in Chinese) doi: 10.7606/j.issn.1000-7601.2020.05.36 [19] 徐世荣, 陈骧, 吴云鹏. 细菌芽孢形成机制在微生态制剂生产中的应用 [J]. 食品与生物技术学报, 2007, 26(4):121−126. doi: 10.3321/j.issn:1673-1689.2007.04.025XU S R, CHEN X, WU Y P. Application of the mechanism of sporulation in production of pharmaceutical probiotics [J]. Journal of Food Science and Biotechnology, 2007, 26(4): 121−126.(in Chinese) doi: 10.3321/j.issn:1673-1689.2007.04.025 [20] CHEN F, WANG M, ZHENG Y, et al. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579 [J]. World Journal of Microbiology and Biotechnology, 2010, 26(4): 675−684. doi: 10.1007/s11274-009-0222-0 [21] CAO Y, XU Z H, LING N, et al. Isolation and identification of lipopeptides produced by B. subtilis SQR9 for suppressing fusarium wilt of cucumber [J]. Scientia Horticulturae, 2012, 135: 32−39. doi: 10.1016/j.scienta.2011.12.002 [22] 郑爱萍, 闫敏, 李平, 等. 黄瓜枯萎病新型抑制蛋白L37的研究 [J]. 园艺学报, 2005, 32(6):1102−1104. doi: 10.3321/j.issn:0513-353X.2005.06.029ZHENG A P, YAN M, LI P, et al. Research on new antagonistic protein L37 against Fusarium oxysporum [J]. Acta Horticulturae Sinica, 2005, 32(6): 1102−1104.(in Chinese) doi: 10.3321/j.issn:0513-353X.2005.06.029 [23] 张美君, 吴庆, 尹翠, 等. 尖镰孢黄瓜专化型枯萎病菌拮抗菌的筛选、鉴定及培养条件优化 [J]. 生物技术通报, 2020, 36(9):125−136. doi: 10.13560/j.cnki.biotech.bull.1985.2020-0578ZHENG M J, W Q, YIN C, et al. Screening and identification of an antagonistic strain against Fusarium oxysporum f. sp. cucumerinum and optimization of culture conditions [J]. Biotechnology Bulletin, 2020, 36(9): 125−136.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2020-0578