• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同强度启动子ACC脱氨酶工程菌株的构建及功能研究

仲惟 李涛 刘文亮 赵君 陈玮

仲惟,李涛,刘文亮,等. 不同强度启动子ACC脱氨酶工程菌株的构建及功能研究 [J]. 福建农业学报,2022,37(1):96−102 doi: 10.19303/j.issn.1008-0384.2022.01.013
引用本文: 仲惟,李涛,刘文亮,等. 不同强度启动子ACC脱氨酶工程菌株的构建及功能研究 [J]. 福建农业学报,2022,37(1):96−102 doi: 10.19303/j.issn.1008-0384.2022.01.013
ZHONG W, LI T, LIU W L, et al. Construction of Rhizobacteria with High-efficiency ACC Deaminase Using Promoter Replacement Technology [J]. Fujian Journal of Agricultural Sciences,2022,37(1):96−102 doi: 10.19303/j.issn.1008-0384.2022.01.013
Citation: ZHONG W, LI T, LIU W L, et al. Construction of Rhizobacteria with High-efficiency ACC Deaminase Using Promoter Replacement Technology [J]. Fujian Journal of Agricultural Sciences,2022,37(1):96−102 doi: 10.19303/j.issn.1008-0384.2022.01.013

不同强度启动子ACC脱氨酶工程菌株的构建及功能研究

doi: 10.19303/j.issn.1008-0384.2022.01.013
基金项目: 河南省科技攻关项目(162102110009)
详细信息
    作者简介:

    仲惟(1981−),男,硕士,副教授,研究方向:生化工艺及农业生物技术(E-mail:zhongweiwm@163.com

    通讯作者:

    李涛(1983−),女,博士,副教授,研究方向:环境微生物及农业生物技术(E-mail: litao83929@163.com

  • 中图分类号: Q 93

Construction of Rhizobacteria with High-efficiency ACC Deaminase Using Promoter Replacement Technology

  • 摘要:   目的  探究细菌对代谢型趋化物的代谢速率对其趋化作用强弱的影响,同时为选育高效植物根际促生菌(Plant growth promoting rhizobacteria,PGPR)菌株开辟新路径。  方法  采用基因克隆得到4种含不同强弱启动子序列的基因片段,将其连至表达载体pBBR1MCS-2,通过三菌杂交接合转移成功构建出生长速率基本一致的4种目标菌株。  结果  ACC脱氨酶活性及AcdS基因表达量测定结果说明AcdS基因表达量、ACC脱氨酶活与启动子强弱之间呈现正相关关系;定性趋化结果表明菌株的ACC代谢速率越高,其对ACC的趋化能力也越强;各菌株在小麦根际定殖数量及对小麦生物量影响结果显示:UW4△AcdS+Bra20A菌株定殖数量最多,UW4△AcdS和UW4△AcdS +Bra1A菌株定殖数量较少;UW4△AcdS+Bra20A菌株处理后小麦茎干及根部重量均最重,UW4△AcdS+Bra1A和UW4△AcdS菌株处理后的小麦茎干较轻,UW4△AcdS菌株处理后的小麦根部重量也最轻。  结论  ACC脱氨酶活性基本与启动子序列强弱呈正相关。菌株的ACC脱氨酶活性越高,其对ACC代谢速率越高,ACC代谢速率越高,其趋化作用越强,对植株的促生效果也越好。
  • 图  1  4种目标菌株菌液RCR凝胶电泳图

    注:M:Trans5k DNA Marker;1:Bra20A片段;2:Bra10A片段;3:Bra1A片段;4;PAA片段。

    Figure  1.  Gel electrophoresis of 4 target strains

    Notes: M: Trans5k DNA marker; 1: Bra20A fragment; 2: Bra10A fragment; 3: Bra1A fragment; 4: PAA fragment.

    图  2  各菌株生长曲线对比

    Figure  2.  Growth of individual strains

    图  3  各菌株ACC脱氨酶活性对比

    注:柱形图上所标小写字母不同表示不同处理间差异显著(P<0.05)。图4、6、7同。

    Figure  3.  ACC deaminase activity of strains

    Notes: Different lowercase letters indicate significant differences (P<0.05). Same for Figs. 4, 6, and 7.

    图  4  各菌株Acds基因表达量对比

    Figure  4.  Acds expressions of strains

    图  5  各菌株对ACC的定性趋化

    Figure  5.  Qualitative chemotaxis on ACC of various strains

    图  6  各菌株在小麦根际定殖数量

    Figure  6.  Colonization number of strains in wheat rhizosphere

    图  7  各菌株对小麦植株促生效果

    Figure  7.  Growth promoting effect of strains on wheat plant

    表  1  含不同强度启动子片段的引物设计

    Table  1.   Primers with promoters of different strength

    引物名称
    Name
    引物序列
    Sequence
    扩增产物
    PCR product
    Bra20A-F CGGGATCCAATACTTGACATATCACTGTGATTA Bra20A
    CATATAATATGCGAAATCTGTAAGGCTAGCCAG
    GCTACACAGGGAATGAACCTGAATCGTTTTG
    Bra10A-F CGGGATCCACCTATTGACAATTAAAGGCTAAAA Bra10A
    TGCTATAATTCCACAAATCTGTAAGGCTAGCCA
    GGCTACACAGGGAATGAACCTGAATCGTTTTG
    Bra1A-F CGGGATCCTCCCTTTGATATTGCATCCCGCGTAT Bra1A
    ATAATATGTCAAATCTGTAAGGCTAGCCAGGCT
    ACACAGGGAATGAACCTGAATCGTTTTG
    A-R CCAAGCTTGTCAATCACGTATTTGGGTAAC 各片段下游引物
    PAA-F CGGGATCCGGTTGAAACTCTGG PAA
    PAA-R CCAAGCTTTTTGACCCAGAC
    注:上游酶切位点为Bam H Ⅰ,下游酶切位点为Hind III,分别以下划线标注。
    Note: Upstream restriction sites Bam H I and downstream restriction sites Hind III are underlined.
    下载: 导出CSV
  • [1] PIZARRO-TOBÍAS P, UDAONDO Z, ROCA A, et al. Events in root colonization by Pseudomonas putida[M]. Netherlands: Springer, 2015.
    [2] ZHANG F S, SHEN J B, ZHANG J L, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity[C]//International symposium of molecular environmental soil science at the interfaces in the earth's critical zone; ISMESS. College of Resource and Environmental Sciences, China Agricultural University. Amsterdam: Elsevier, 2009: 1–32.
    [3] 沈德龙, 李俊, 姜昕. 我国微生物肥料产业现状及发展方向 [J]. 微生物学杂志, 2013, 33(3):1−4.

    SHEN D L, LI J, JIANG X. Status quo and development of microbial fertilizer industry in China [J]. Journal of Microbiology, 2013, 33(3): 1−4.(in Chinese)
    [4] 胡小加, 余常兵, 李银水, 等. 枯草芽孢杆菌Tu-100对油菜根系分泌物所含氨基酸的趋化性研究 [J]. 土壤学报, 2010, 47(6):1243−1248. doi: 10.11766/trxb200908070341

    HU X J, YU C B, LI Y S, et al. Chemotaxis of Bacillus subtilis tu-100 toward amino acids in root exudates of oilseed rape [J]. Acta Pedologica Sinica, 2010, 47(6): 1243−1248.(in Chinese) doi: 10.11766/trxb200908070341
    [5] BULL C T. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens Strain 2-79 [J]. Phytopathology, 1991, 81(9): 954.
    [6] PII Y, MIMMO T, TOMASI N, et al. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review [J]. Biology and Fertility of Soils, 2015, 51(4): 403−415.
    [7] 王淼, 张莉, 刘瑛, 等. 趋化性参与内生细菌336x在小麦根系的内生定殖 [J]. 河南大学学报(自然科学版), 2012, 42(6):736−741.

    WANG M, ZHANG L, LIU Y, et al. Chemotaxis of endophytic bacteria 336x involved in endophytic colonization in wheat roots [J]. Journal of Henan University (Natural Science Edition), 2012, 42(6): 736−741.(in Chinese)
    [8] LI T, ZHANG J, SHEN C H, et al. 1-aminocyclopropane-1-carboxylate: A novel and strong chemoattractant for the plant beneficial rhizobacterium Pseudomonas putida UW4 [J]. Molecular Plant-Microbe Interactions, 2019, 32(6): 750−759.
    [9] SHAHAROONA B, JAMRO G M, ZAHIR Z A, et al. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L. ) [J]. Journal of Microbiology and Biotechnology, 2007, 17(8): 1300−1307.
    [10] BRAATSCH S, HELMARK S, KRANZ H, et al. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning [J]. BioTechniques, 2008, 45(3): 335−337. doi: 10.2144/000112907
    [11] PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria [J]. Physiologia Plantarum, 2003, 118(1): 10−15.
    [12] TSO W W, ADLER J. Negative chemotaxis in Escherichia coli [J]. Journal of Bacteriology, 1974, 118(2): 560−576. doi: 10.1128/jb.118.2.560-576.1974
    [13] PORTER S L, WADHAMS G H, ARMITAGE J P. Signal processing in complex chemotaxis pathways [J]. Nature Reviews Microbiology, 2011, 9(3): 153−165.
    [14] NI B, HUANG Z, FAN Z, et al. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds [J]. Molecular Microbiology, 2013, 90(4): 813−823.
    [15] LACAL J, ALFONSO C, LIU X X, et al. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: Differential chemotactic response towards receptor ligands [J]. The Journal of Biological Chemistry, 2010, 285(30): 23126−23136. doi: 10.1074/jbc.M110.110403
    [16] LUU R A, KOOTSTRA J D, NESTERYUK V, et al. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY [J]. Molecular Microbiology, 2015, 96(1): 134−147.
    [17] JIANG X Z, LIU H J, NIU Y C, et al. Determination of temperature sensitive plasmid copy number in Escherichia coli by absolute and relative real time quantitation PCR [J]. Jundishapur Journal of Microbiology, 2017, 10(7): e14600.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  215
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-10-26
  • 网络出版日期:  2022-02-07
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回