Responses and Tolerance of Three Peach Cultivars to Waterlogging
-
摘要:
目的 研究浙江省主栽3个不同成熟期桃品种响应淹水胁迫的形态及生理特性变化,综合评估其耐涝性,为桃抗涝栽培技术制定及耐涝品种的选育提供参考。 方法 以早熟春红、中熟新川中岛和晚熟锦绣等3个桃品种的毛桃砧1年生嫁接苗为材料,通过盆栽模拟涝害试验,比较植株表型、根系细胞解剖结构、涝害指数变化,同时测定叶片光合特性、渗透调节物质含量及抗氧化酶活性等生理生化指标变化,并利用隶属函数及主成分分析评价耐涝性。 结果 淹水使砧木根系受损腐烂,皮层细胞裂解形成气腔;叶片萎蔫黄化脱落,涝害指数持续上升,其中春红品种的涝害指数始终显著低于新川中岛、锦绣品种;随着淹水进程,叶片光合作用受阻,净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)等光合参数持续下降,胞间CO2浓度(Ci)逐步上升,春红的光合性能始终强于新川中岛和锦绣;叶片细胞膜透性不断增加,丙二醛(MDA)和可溶性糖(SS)含量、超氧化物歧化酶(SOD)和过氧化物酶(POD)等酶活性总体呈现先上升后下降趋势;应用隶属函数和主成分分析3个桃品种耐涝性强弱依次为:春红 >新川中岛>锦绣。 结论 持续淹水导致桃根系及叶片光合性能严重受损,3个不同成熟期桃品种的耐涝性存在显著差异,其中春红耐涝性表现最好。 Abstract:Objective Morphological and physiological changes and waterlogging tolerance of three major peach cultivars in Zhejiang Province in response to flooding stress were studied. Method One-year-old seedlings of early (Chunhong), mid (Shinkawa Nakajima), and late (Jinxiu) varieties of peaches grafted on Maotao rootstocks planted in pots were treated with or without simulated waterlogging. Phenotype, waterlogging index, and root cell anatomical structure of the plants were compared, and photosynthetic parameters, osmotic adjustment substances content, and antioxidant enzyme activities determined. Waterlogging tolerance of the cultivars was evaluated using the membership function and principal component analyses. Result Prolonged waterlogging progressively damaged the tips of the peach plant roots showing lysed cortical cells with irregular air cavities, and the roots eventually rotted. As the waterlogging index continued rising the leaves also wilted, yellowed, and even shed. The index on Chunhong was significantly lower than those of Shinkawa Nakajima and Jinxiu. The leaf photosynthetic capacity was hindered by the waterlogging with significantly declined net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs), and raised intercellular CO2 concentration (Ci). The Chunhong variety maintained a higher photosynthetic capacity than did either Shinkawa Nakajima or Jinxiu. Meanwhile, under the stress, the leaf cell membrane permeability continued to rise, while the contents of MDA and SS and the activities of SOD and POD increased initially and then decreased. The membership function and principal component analyses ranked the waterlogging tolerance of these cultivars as Chunhong>Shinkawa Nakajima>Jinxiu. Conclusion Prolonged waterlogging could cause severe damages to the roots and photosynthetic function of the peach plants. The degree of tolerance to such stress varied significantly among the 3 cultivars, and Chunhong was seen most tolerant to waterlogging as shown in the pot experiment. -
图 1 淹水胁迫下3个桃品种根系横切解剖结构变化
注:①A~D为新川中岛,E~H为锦绣,I~L为春红;A、E、I为淹水第0天,B、F、J淹水第4天;C、G、K为淹水第8天;D、H、L为淹水第10天。②箭头指示为气腔和细胞解离部位。③ep:表皮;co:皮层;px:初生木质部。
Figure 1. Changes on root cross-section structure of 3 peach cultivars under flooding stress
Note: ① A-D: Shinkawa Nakajima; E-H: Jinxiu; I-L: Chunhong; A, E, and I: 0d; B, F, and J: 4th day; C, G, and K: 8th day; D, H, and L: 10th day. ②Arrows point at air chambers and dissociation sites.③ep: epidermis; co: cortex; px: primary xylem.
图 2 淹水胁迫下3个桃品种叶片光合指标变化
注:①小写字母代表同一时间各品种具有显著差异(P<0.05)。图3~5同。②A:净光合速率;B:蒸腾速率;C:气孔导度;D:胞间CO2浓度。
Figure 2. Changes on leaf photosynthetic indices of 3 peach cultivars under flooding stress
Note: ①Data with different letters indicate significant differences between cultivars at same sampling time (P<0.05).The same as Fig.3-5.②A: Net photosynthesis rate; B: Transpiration; C: Stomatal conductance; D: Intercellular CO2 concentrations.
表 1 淹水胁迫下3个桃品种涝害指数
Table 1. Waterlogging indices of 3 peach cultivars under flooding stress
(单位:%) 品种
Cultivars淹水天数 Days after flooding treatment 0 d 2 d 4 d 6 d 8 d 10 d 新川中岛 Shinkawa Nakajima 0.00 20.12 42.67 56.33 70.67 70.67 锦绣 Jinxiu 0.00 14.33 46.33 66.67 70.67 78.22 春红 Chunhong 0.00 4.67 10.67 34.47 42.67 52.79 表 2 淹水胁迫下3个桃品种各单项指标耐涝系数
Table 2. Waterlogging tolerance coefficients on various indices of 3 peach cultivars under flooding stress
(单位:%) 品种
Cultivars耐涝系数 Waterlogging tolerance coefficient REC Pn Tr Gs Ci MDA SS SOD POD 新川中岛 Shinkawa Nakajima 243.98 1.75 8.36 6.01 138.31 336.32 248.99 247.94 93.32 锦绣 Jinxiu 291.08 1.13 9.85 5.18 162.32 170.92 173.34 362.76 70.37 春红 Chunhong 226.02 5.66 11.71 7.55 131.91 159.46 120.40 1243.39 199.92 表 3 淹水胁迫下3个桃品种各指标系数及贡献率
Table 3. Coefficients and contribution rates of various indices of 3 peach cultivars under flooding stress
项目
Item综合指标
Comprehensive indexREC Pn Tr Gs Ci MDA SS SOD POD 贡献率
Wj Contribution rates/%成分 Factor F1 −0.126 0.145 0.130 0.153 −0.119 −0.068 −0.114 0.153 0.157 70.65 F2 −0.228 0.146 −0.211 0.083 −0.249 0.341 0.260 −0.089 0.014 29.30 表 4 淹水胁迫下3个桃品种耐涝性综合评价
Table 4. Comprehensive evaluation on waterlogging tolerance of 3 peach cultivars under flooding stress
品种
Cultivars综合指标 Comprehensive index 隶属函数值 Subordinate function value D 耐涝性
Waterlogging toleranceF1 F2 U(F1) U(F2) 新川中岛 Shinkawa Nakajima −43.61 67.51 0.00 1.00 0.29 中等 Medium 锦绣 Jinxiu −19.07 −36.80 0.12 0.40 0.20 差 Poor 春红 Chunhong 156.38 −107.70 1.00 0.00 0.71 强 High 权重 Index Weight 0.71 0.29 -
[1] ALI R, KURIQI A, KISI O. Human–environment natural disasters interconnection in China: A review [J]. Climate, 2020, 8(4): 48. doi: 10.3390/cli8040048 [2] PEDERSEN O, PERATA P, VOESENEK L A C J. Flooding and low oxygen responses in plants [J]. Functional Plant Biology, 2017, 44(9): ⅲ-ⅵ. doi: 10.1071/fpv44n9_fo [3] 谭淑端, 朱明勇, 张克荣, 等. 植物对水淹胁迫的响应与适应 [J]. 生态学杂志, 2009, 28(9):1871−1877.TAN S D, ZHU M Y, ZHANG K R, et al. Response and adaptation of plants to submergence stress [J]. Chinese Journal of Ecology, 2009, 28(9): 1871−1877.(in Chinese) [4] 钱龙. 涝渍胁迫下棉花生长和产量的响应及模拟[D]. 武汉: 武汉大学, 2017.QIAN L. Simulation for the growth and yield of cotton in response to soil aeration stress [D]. Wuhan: Wuhan University, 2017. (in Chinese) [5] LIANG K, TANG K Y, FANG T, et al. Waterlogging tolerance in maize: Genetic and molecular basis [J]. Molecular Breeding, 2020, 40(12): 1−13. [6] XU X W, JI J, XU Q, et al. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation [J]. The Plant Journal, 2018, 93(5): 917−930. doi: 10.1111/tpj.13819 [7] 白团辉, 马锋旺, 李翠英, 等. 苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析 [J]. 中国农业科学, 2008, 41(12):4140−4148. doi: 10.3864/j.issn.0578-1752.2008.12.026BAI T H, MA F W, LI C Y, et al. Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress [J]. Scientia Agricultura Sinica, 2008, 41(12): 4140−4148.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.12.026 [8] 马瑞娟, 张斌斌, 蔡志翔, 等. 不同桃砧木品种对淹水的光合响应及其耐涝性评价 [J]. 园艺学报, 2013, 40(3):409−416.MA R J, ZHANG B B, CAI Z X, et al. Evaluation of peach rootstock waterlogging tolerance based on the responses of the photosynthetic indexes to continuous submergence stress [J]. Acta Horticulturae Sinica, 2013, 40(3): 409−416.(in Chinese) [9] ZHOU W G, CHEN F, MENG Y J, et al. Plant waterlogging/flooding stress responses: From seed germination to maturation [J]. Plant Physiology and Biochemistry, 2020, 148: 228−236. doi: 10.1016/j.plaphy.2020.01.020 [10] 马月花, 郭世荣, 杜南山, 等. 低氧胁迫对黄瓜幼苗生长和形态结构及有关酶活性的影响 [J]. 南京农业大学学报, 2016, 39(2):213−219. doi: 10.7685/jnau.201506001MA Y H, GUO S R, DU N S, et al. Effect of hypoxia stress on growth, Morpho-anatomical acclimation and activity of involved enzymes of cucumber seedlings [J]. Journal of Nanjing Agricultural University, 2016, 39(2): 213−219.(in Chinese) doi: 10.7685/jnau.201506001 [11] 肖元松, 彭福田, 束怀瑞, 等. 过氧化尿素对桃幼树淹水胁迫的缓解效果研究 [J]. 植物营养与肥料学报, 2016, 22(2):502−510. doi: 10.11674/zwyf.14479XIAO Y S, PENG F T, SHU H R, et al. Alleviation of urea peroxide to waterlogging damage in young peach trees [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 502−510.(in Chinese) doi: 10.11674/zwyf.14479 [12] DAWOOD T, YANG X P, VISSER E J W, et al. A co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in Solanum dulcamara [J]. Plant Physiology, 2016, 170(4): 2351−2364. doi: 10.1104/pp.15.00773 [13] 杜克兵, 许林, 涂炳坤, 等. 淹水胁迫对2种杨树1年生苗叶片超微结构和光合特性的影响 [J]. 林业科学, 2010, 46(6):58−64,183. doi: 10.11707/j.1001-7488.20100609DU K B, XU L, TU B K, et al. Influences of soil flooding on ultrastructure and photosynthetic capacity of leaves of one-year old seedlings of two poplar clones [J]. Scientia Silvae Sinicae, 2010, 46(6): 58−64,183.(in Chinese) doi: 10.11707/j.1001-7488.20100609 [14] 古咸彬, 薛莲, 陆玲鸿, 等. ‘浙猕砧1号’对长期淹水处理的响应特征 [J]. 果树学报, 2019, 36(3):327−337.GU X B, XUE L, LU L H, et al. Characteristics of the response of Actinidia polygama to long-term waterlogging stress [J]. Journal of Fruit Science, 2019, 36(3): 327−337.(in Chinese) [15] 关超. 红树林植物根系解剖结构研究[D]. 沈阳: 沈阳农业大学, 2016.GUAN C. A study of root anatomical structures in several mangrove plant species[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese) [16] 杨旭, 王露, 张宇, 等. 茄子种质资源苗期耐涝性鉴定 [J]. 热带作物学报, 2016, 37(12):2319−2327. doi: 10.3969/j.issn.1000-2561.2016.12.013YANG X, WANG L, ZHANG Y, et al. To identify the flooding stress tolerance of eggplants at seedling stage [J]. Chinese Journal of Tropical Crops, 2016, 37(12): 2319−2327.(in Chinese) doi: 10.3969/j.issn.1000-2561.2016.12.013 [17] 郭洪, 赵密珍, 周建涛. 若干桃砧木的抗涝性 [J]. 中国南方果树, 1999, 28(2):47.GUO H, ZHAO M Z, ZHOU J T. Waterlogging resistance of several peach rootstocks [J]. South China Fruits, 1999, 28(2): 47.(in Chinese) [18] 刘新. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2015. [19] 周广生, 梅方竹, 周竹青, 等. 小麦不同品种耐湿性生理指标综合评价及其预测 [J]. 中国农业科学, 2003, 36(11):1378−1382. doi: 10.3321/j.issn:0578-1752.2003.11.026ZHOU G S, MEI F Z, ZHOU Z Q, et al. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties [J]. Scientia Agricultura Sinica, 2003, 36(11): 1378−1382.(in Chinese) doi: 10.3321/j.issn:0578-1752.2003.11.026 [20] 白丹凤, 李志, 齐秀娟, 等. 4种基因型猕猴桃对淹水胁迫的生理响应及耐涝性评价 [J]. 果树学报, 2019, 36(2):163−173.BAI D F, LI Z, QI X J, et al. Physiological responses and tolerance evaluation of four species of Actinidia to waterlogging stress [J]. Journal of Fruit Science, 2019, 36(2): 163−173.(in Chinese) [21] 聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展 [J]. 中国农学通报, 2021, 37(18):57−64. doi: 10.11924/j.issn.1000-6850.casb2020-0403NIE G P, CHEN M M, YANG L Y, et al. Plant response to waterlogging stress: Research progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 57−64.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2020-0403 [22] OSAKABE Y, OSAKABE K, SHINOZAKI K, et al. Response of plants to water stress [J]. Frontiers in Plant Science, 2014, 5 (86):1-8. [23] 刘超颖, 郑明明, 熊遂金, 等. 淹水胁迫对‘纽荷尔脐橙’/枳幼苗形态及生理特性的影响 [J]. 果树学报, 2019, 36(11):1494−1504.LIU C Y, ZHENG M M, XIONG S J, et al. Effect of soil flooding stress on morphological and physiological characteristics of young plants of 'Newhall Navel Orange'/Poncirus trifoliata(L.) Raf [J]. Journal of Fruit Science, 2019, 36(11): 1494−1504.(in Chinese) [24] 陈玉明. 猕猴桃耐淹砧木响应低氧胁迫的生理研究[D]. 杭州: 浙江农林大学, 2018.CHEN Y M. Physiological research on the response of kiwifruit tolerant-rootstock to hypoxia stress[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese) [25] SUN X P, YAN H L, KANG X Y, et al. Growth, gas exchange, and water-use efficiency response of two young apple cultivars to drought stress in two scion-one rootstock grafting system [J]. Photosynthetica, 2013, 51(3): 404−410. doi: 10.1007/s11099-013-0040-3 [26] 郭学民, 肖啸, 梁丽松, 等. ‘21世纪’桃对其砧木毛桃根系导管分子性状的影响 [J]. 园艺学报, 2011, 38(6):1147−1152.GUO X M, XIAO X, LIANG L S, et al. Effects of grafted Prunus persica ‘21th century’ on the characters of vessel elements in root system of P. Persica stock [J]. Acta Horticulturae Sinica, 2011, 38(6): 1147−1152.(in Chinese) [27] VIDOY-MERCADO I, NARVÁEZ I, PALOMO-RÍOS E, et al. Reinvigoration/rejuvenation induced through micrografting of tree species: Signaling through graft union [J]. Plants, 2021, 10(6): 1197. doi: 10.3390/plants10061197 [28] 何文, 潘鹤立, 潘腾飞, 等. 果树砧穗互作研究进展 [J]. 园艺学报, 2017, 44(9):1645−1657.HE W, PAN H L, PAN T F, et al. Research progress on the interaction between scion and rootstock in fruit trees [J]. Acta Horticulturae Sinica, 2017, 44(9): 1645−1657.(in Chinese) [29] MEENA R S, VIJAYAKUMAR V, YADAV G S, et al. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere [J]. Plant Growth Regulation, 2018, 84(2): 207−223. doi: 10.1007/s10725-017-0334-8 [30] 潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展 [J]. 生态学杂志, 2012, 31(10):2662−2672.PAN L, XUE L. Plant physiological mechanisms in adapting to waterlogging stress: A review [J]. Chinese Journal of Ecology, 2012, 31(10): 2662−2672.(in Chinese) [31] ZHU J K. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313−324. doi: 10.1016/j.cell.2016.08.029 [32] 张斌斌, 马瑞娟, 蔡志翔, 等. 3个桃砧木品种对淹水的光合生理响应特征 [J]. 西北植物学报, 2013, 33(1):146−153. doi: 10.3969/j.issn.1000-4025.2013.01.023ZHANG B B, MA R J, CAI Z X, et al. Photosynthetic characteristics response to water-logging in 3 peach rootstock seedlings [J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1): 146−153.(in Chinese) doi: 10.3969/j.issn.1000-4025.2013.01.023 [33] 张维, 李云, 戚存扣, 等. 淹水胁迫对耐淹和不耐淹油菜光合参数影响差异的研究 [J]. 中国农学通报, 2019, 35(7):28−35. doi: 10.11924/j.issn.1000-6850.casb18090105ZHANG W, LI Y, QI C K, et al. Effects of waterlogging stress on photosynthetic parameters of waterlogging-tolerant and susceptible rapeseed lines [J]. Chinese Agricultural Science Bulletin, 2019, 35(7): 28−35.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb18090105 [34] 张慧琴, 马常念, 谢鸣, 等. 东溪小仙桃对淹水胁迫的生理响应 [J]. 浙江农业学报, 2015, 27(6):976−980. doi: 10.3969/j.issn.1004-1524.2015.06.14ZHANG H Q, MA C N, XIE M, et al. Response of Dongxixiaoxian peach to waterlogging stress [J]. Acta Agriculturae Zhejiangensis, 2015, 27(6): 976−980.(in Chinese) doi: 10.3969/j.issn.1004-1524.2015.06.14 [35] 刘聪聪, 兰超杰, 李欢, 等. 樱桃番茄苗期对淹水胁迫的响应及其耐涝性评价 [J]. 核农学报, 2020, 34(3):650−660. doi: 10.11869/j.issn.100-8551.2020.03.0650LIU C C, LAN C J, LI H, et al. Responses of waterlogging stress and evaluation of waterlogging tolerance in cherry tomato at seedling stage [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 650−660.(in Chinese) doi: 10.11869/j.issn.100-8551.2020.03.0650 [36] 朱向涛, 金松恒, 哀建国, 等. 牡丹不同品种耐涝性综合评价 [J]. 核农学报, 2017, 31(3):607−613. doi: 10.11869/j.issn.100-8551.2017.03.0607ZHU X T, JIN S H, AI J G, et al. Evaluation of waterlogging tolerance of peony variety [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 607−613.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.03.0607