Potato Growth and Soil Enzyme Activities as Affected by Rotation or Continuous Cropping Cultivation
-
摘要:
目的 探究长期轮作与连作对马铃薯生长发育及土壤酶活性的影响。 方法 采用连续5年定点试验,以正茬马铃薯为对照,研究马铃薯和玉米轮作、普通连作(马铃薯春作)、强化连作(马铃薯春秋连作)对马铃薯植株形态、土壤酶活性、土壤全量养分与速效养分的影响。 结果 普通连作与强化连作降低了马铃薯株高、茎粗和总叶面积,增加了根系长度,而轮作可增加马铃薯株高、茎粗和总叶面积大小,且随着生育期推进差异更加显著;整体上土壤酶活性大小为正茬薯作>马铃薯和玉米轮作>普通连作>强化连作,除脲酶外,其余酶活性在马铃薯整个生育期均为上升趋势,马铃薯和玉米轮作相比普通连作与强化连作增幅更大;土壤中速效养分受连作方式影响较大,其中成熟期马铃薯和玉米轮作土壤中碱解氮、速效钾和速效磷分别高于普通连作4.98%、6.79%、16.38%,高于强化连作13.02%、15.21%、16.12%,生育期前后养分含量差异也更大。 结论 通过轮作可以提高土壤酶活性,加速土壤中速效养分转化,促进马铃薯植株生长发育,从而缓解长期连作对马铃薯的胁迫作用。 Abstract:Objective Effects of rotation or continuous cropping potatoes on the plant growth and soil chemical and biochemical properties were studied. Method A 5-year fix-point experiment was conducted to compare the effects of a potato-maize rotation cultivation, the commonly practiced continuous annual planting of potatoes in spring, and an intensified continuous spring and autumn cropping in a same year on the morphological indices of the potato plants as well as the enzyme activities and total effective and available nutrients in the soil. Result Both common and the intensified continuous cropping caused reductions on the plant height, stem girth, and leaf area but an increase on the root length in comparison with control. On the other hand, the rotation cultivation of potatoes and maize raised those first 3 indicators in increasing differentiations from the other cropping practices along with growth of the plants. Meanwhile, the enzyme activities in the soil were higher than the continuous cropping fields, especially the intensified continuous cropping one. In addition, the available nutrients were also significantly affected by the cultivation practices. For instance, at time of crop maturation, the total nitrogen, total potassium, and total phosphorus in the soil, where the cultivation was conducted by rotating potato and maize crops, were 4.98%, 6.79%, and 16.38%, respectively, higher than those in the soil under the common continuous cropping, and 13.02%, 15.21%, and 16.12%, respectively, higher than those under the intensified continuous cropping. Conclusion Rotation cultivation of potatoes and maize significantly promoted the potato plant growth and development, enhanced the soil enzyme activity, and accelerated the transformation of available nutrients in soil to materially reduce the stress on the plants incurred by long-term continuous cropping. -
Key words:
- Potato /
- continuous cropping /
- rotation /
- soil enzyme /
- soil nutrients
-
图 1 轮作与连作对马铃薯株高的影响
注:MPRC,马铃薯和玉米轮作;PCC,普通连作;PICC,强化连作;PNC,正茬薯作。图柱上方小写字母不同表示处理间差异达到显著水平(P<0.05 ),下图同。
Figure 1. Effects of rotation and continuous cropping on potato plant height
Note: MPRC: potato-maize rotation cropping; PCC: potato continuous cropping; PICC: potato intensified continuous cropping: PNC: potato normal planting. Different lower case letters above columns indicate significant differences between treatments. Same for following figures.
表 1 试验处理
Table 1. Tested crop cultivation treatments
年份
Years对照
Control普通连作
Potato continuous cropping马铃薯和玉米轮作
Potato maize rotation cropping强化连作
Potato intensified continuous cropping2015 — 春薯 Spring Potato 春薯 Spring Potato 春薯-秋薯 Spring Potato - Autumn Potato 2016 — 春薯 Spring Potato 玉米 Corn 春薯-秋薯 Spring Potato - Autumn Potato 2017 — 春薯 Spring Potato 春薯 Spring Potato 春薯-秋薯 Spring Potato - Autumn Potato 2018 — 春薯 Spring Potato 玉米 Corn 春薯-秋薯 Spring Potato - Autumn Potato 2019 正茬薯作 Normal planting 春薯 Spring Potato 春薯 Spring Potato 春薯-秋薯 Spring Potato - Autumn Potato 表 2 轮作与连作对马铃薯土壤抗逆性酶活性的影响
Table 2. Effects of rotation and continuous cropping on potato resistance enzyme activities in soil
指标
Index处理
Treatment前期
Earlier stage花期
Florescence stage块茎膨大期
Expansion stage成熟期
Mature stage过氧化氢酶 Catalase/(μg·g−1·24h−1) MPRC 2.73±0.24 a 1.88±0.19 c 1.79±0.03 b 2.35±0.07 b PCC 2.63±0.11 a 1.97±0.23 bc 1.89±0.14 b 2.34±0.25 b PICC 2.76±0.55 a 2.24±0.08 b 1.89±0.06 b 1.24±0.15 c PNC 2.58±0.76 a 2.48±0.15 a 2.61±0.16 a 3.02±0.12 a FDA水解酶 Hydrolase/(μg·g−1·h−1) MPRC 9.4±0.25 b 11.36±0.23 bc 10.96±0.64 b 10.44±0.50 c PCC 7.89±0.42 c 10.83±0.35 c 12.56±0.91 b 11.56±0.95 c PICC 6.49±0.53 d 12.49±0.98 ab 11.56±0.41 b 12.76±0.70 b PNC 10.9±0.68 a 12.66±0.76 a 13.86±0.71 a 15.51±015 a 多酚氧化酶 Polyphenol oxidase/(mg·g−1·20min−1) MPRC 266.90±29.51 b 387.75±43.37 a 483.51±12.38 ab 436.74±45.09 b PCC 282.46±27.22 ab 360.39±53.31 b 431.98±56.99 b 366.26±10.27 c PICC 290.71±7.67 a 324.68±39.01 b 360.07±46.55 c 310.56±17.65 d PNC 228.6±13.13 c 415.95±28.86 a 529.92±67.09 a 587.22±39.27 a 注:同类同列数据后小写英文字母不同表示差异显著(P<0.05),下表同。
Note: Different lowercase English letters after the same column of data indicate significant differences (P<0.05). Same for following table.表 3 轮作与连作对马铃薯土壤转化酶活性的影响
Table 3. Effects of rotation and continuous cropping on potato invertase activity in soil
指标
Index处理
Treatment前期
Earlier stage花期
Florescence stage块茎膨大期
Expansion stage成熟期
Mature stage磷酸酶 Phosphatase/(mg·g−1) MPRC 0.47±0.02 a 0.53±0.02 b 0.65±0.02 a 0.66±0.05 a PCC 0.48±0.03 a 0.49±0.01 c 0.56±0.04 b 0.59±0.02 b PICC 0.42±0.02 b 0.47±0.02 c 0.54±0.01 b 0.55±0.03 b PNC 0.47±0.02 a 0.62±0.03 a 0.63±0.08 a 0.68±0.1 a 蔗糖酶 Sucrase/(mg·g−1) MPRC 27.75±3.71 a 25.77±1.47 c 31.53±4.83 a 34.11±4.01 b PCC 30.4±1.14 a 28.67±2.17 bc 19.13±3.71 b 21.94±2.43 c PICC 32.28±0.81 a 27.99±4.28 b 20.30±4.31 b 23.60±5.99 c PNC 30.2±2.05 a 30.68±1.27 a 39.74±3.74 a 46.53±4.34 a 脲酶 Urease/(mg·g−1) MPRC 1.52±0.02 c 1.30±0.01 b 1.19±0.05 b 1.40±0.08 b PCC 1.85±0.03 b 1.18±0.03 c 1.14±0.02 b 1.21±0.04 c PICC 1.51±0.05 c 1.24±0.09 bc 1.15±0.05 b 1.18±0.05 d PNC 2.01±0.06 a 1.79±0.06 a 1.74±0.04 a 1.78±0.05 a 表 4 轮作与连作对马铃薯土壤养分的影响
Table 4. Effects of rotation and continuous cropping on potato nutrients in soil
指标
Index前期
Earlier stage成熟期
Mature stageMPRC PCC PICC PNC MPRC PCC PICC PNC 全氮
Total nitrogen/(g·kg−1)2.13±0.14 b 2.06±037 b 2.08±0.07 b 2.42±0.03 a 1.99±0.10 bc 1.82±0.05 c 1.83±0.08 c 2.10±0.03 ab 碱解氮
Alkeline-N/(mg·kg−1)121.17±0.29 c 119.67±0.58 c 113.33±3.18 c 133.17±4.04 a 113.01±1.73 ab 114.33±2.02 b 106.17±4.04 c 120.17±1.50 a 全磷
Total phosphorus/(g·kg−1)0.57±0.01 a 0.53±0.01 b 0.52±0.01 b 0.53±0.01 b 0.57±0.01 ab 0.56±0.01 b 0.56±0.01 b 0.59±0.02 a 速效磷
Available phosphorus/(mg·kg−1)19.13±1.84 a 15.10±2.39 b 14.36±1.18 b 19.78±1.36 a 19.39±1.01 b 19.76±1.00 b 18.40±0.70 c 21.22±1.69 a 全钾
Total potassium/(g·kg−1)13.02±0.22 a 13.02±0.22 a 13.15±0.12 a 12.31±0.18 b 11.83±0.21 b 11.72±0.11 b 12.67±0.28 a 12.96±0.68 a 速效钾
Available potassium/(mg·kg−1)65.59±3.60 d 84.53±4.57 b 108.99±4.34 a 71.10±2.51 c 97.95±5.75 a 52.20±2.15 c 53.76±2.88 c 62.43±1.44 b -
[1] 周华兰, 彭亚丽, 李婷, 等. 马铃薯连作对土壤理化性质和生物学特性的影响 [J]. 湖南农业大学学报(自然科学版), 2019, 45(6):611−616.ZHOU H L, PENG Y L, LI T, et al. Effects of potato continuous cropping on soil physicochemical and biological properties [J]. Journal of Hunan Agricultural University(Natural Sciences), 2019, 45(6): 611−616.(in Chinese) [2] 顾松松, 熊兴耀, 谭琳, 等. 土壤微生态与马铃薯连作障碍机制的研究进展 [J]. 中国农学通报, 2018, 34(30):42−45. doi: 10.11924/j.issn.1000-6850.casb17110026GU S S, XIONG X Y, TAN L, et al. Soil microorganisms and the mechanism of potato continuous cropping obstacle: Research progress [J]. Chinese Agricultural Science Bulletin, 2018, 34(30): 42−45.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb17110026 [3] 尹承苗, 王玫, 王嘉艳, 等. 苹果连作障碍研究进展 [J]. 园艺学报, 2017, 44(11):2215−2230.YIN C M, WANG M, WANG J Y, et al. The research advance on apple replant disease [J]. Acta Horticulturae Sinica, 2017, 44(11): 2215−2230.(in Chinese) [4] 熊湖, 郑顺林, 龚静, 等. 液态有机肥对酚酸胁迫下马铃薯生长发育和土壤酶活性影响 [J]. 水土保持学报, 2019, 33(3):254−259, 267.XIONG H, ZHENG S L, GONG J, et al. Effects of liquid organic fertilizer on potato growth and soil enzyme activities under phenolic acid stress [J]. Journal of Soil and Water Conservation, 2019, 33(3): 254−259, 267.(in Chinese) [5] 侯乾, 王万兴, 李广存, 等. 马铃薯连作障碍研究进展 [J]. 作物杂志, 2019(6):1−7.HOU Q, WANG W X, LI G C, et al. Advances in the research on potato continuous cropping obstacles [J]. Crops, 2019(6): 1−7.(in Chinese) [6] 郭世丰, 王雪, 朱彪. 马铃薯连作障碍机理及防治对策 [J]. 现代农业科技, 2016(17):81,83.GUO S F, WANG X, ZHU B. Mechanism and control measures of potato continuous cropping obstacles [J]. Modern Agricultural Science and Technology, 2016(17): 81,83.(in Chinese) [7] 郝智勇. 马铃薯连作障碍形成原因及调控措施 [J]. 安徽农学通报, 2017, 23(8):40,45.HAO Z Y. Causes and control measures of potato continuous cropping obstacle [J]. Anhui Agricultural Science Bulletin, 2017, 23(8): 40,45.(in Chinese) [8] 钏有聪, 张立猛, 焦永鸽, 等. 大蒜与烤烟轮作对烟草黑胫病的防治效果及作用机理初探 [J]. 中国烟草学报, 2016, 22(5):55−62.CHUAN Y C, ZHANG L M, JIAO Y G, et al. Control effects of tobacco and garlic rotation on tobacco black shank and a preliminary study on the inhibition mechanism [J]. Acta Tabacaria Sinica, 2016, 22(5): 55−62.(in Chinese) [9] 吴杨潇影, 姜振辉, 杨京平, 等. 玉米-水稻轮作和水稻连作土壤根际和非根际氮含量及酶活性 [J]. 植物营养与肥料学报, 2019, 25(4):535−543. doi: 10.11674/zwyf.18146WU Y X Y, JIANG Z H, YANG J P, et al. Nitrogen content and enzyme activity in rhizosphere and non-rhizosphere soils of paddy field under maize-rice rotation and rice continuous mono-cropping [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 535−543.(in Chinese) doi: 10.11674/zwyf.18146 [10] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [11] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [12] 傅丽君, 赵士熙, 王海, 等. 4种农药对土壤微生物呼吸及过氧化氢酶活性的影响 [J]. 福建农业大学学报, 2005, 34(4):441−445.FU L J, ZHAO S X, WANG H, et al. Effects of four pesticides on catalase activity in soil and soil respiration [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2005, 34(4): 441−445.(in Chinese) [13] 闫宇婷, 宋秋来, 闫超, 等. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究 [J]. 作物学报, 2021,48(4):1−15.YAN Y T, SONG Q L, YAN C, et al. Study on nitrogen accumulation and nitrogen substitution effect of Maize under continuous cropping straw returning [J]. Journal of crops, 2021,48(4): 1−15.(in Chinese) [14] 丁素荣, 周学超, 刘迎春, 等. 内蒙古东南部地区玉米大豆轮作效应研究 [J]. 大豆科学, 2021, 40(1):39−44.DING S R, ZHOU X C, LIU Y C, et al. Study on the effect of maize and soybean rotation in southeastern Inner Mongolia [J]. Soybean Science, 2021, 40(1): 39−44.(in Chinese) [15] 李小霞, 靳鲲鹏, 李万星, 等. 旱地番茄连作障碍机理研究进展 [J]. 北方农业学报, 2020, 48(1):35−40. doi: 10.12190/j.issn.2096-1197.2020.01.07LI X X, JIN K P, LI W X, et al. Research progress of mechanism of continuous cropping obstacles of tomatoe in dryland [J]. Journal of Northern Agriculture, 2020, 48(1): 35−40.(in Chinese) doi: 10.12190/j.issn.2096-1197.2020.01.07 [16] 张文明, 邱慧珍, 刘星, 等. 连作对马铃薯根系生物学特征和叶片抗逆生理的影响 [J]. 干旱地区农业研究, 2014, 32(4):20−23,52. doi: 10.7606/j.issn.1000-7601.2014.04.004ZHANG W M, QIU H Z, LIU X, et al. Effect of continuous cropping on morphology and physiological characteristics of potato root and leaf [J]. Agricultural Research in the Arid Areas, 2014, 32(4): 20−23,52.(in Chinese) doi: 10.7606/j.issn.1000-7601.2014.04.004 [17] 呼红梅, 王莉. 水肥耦合对谷子幼苗形态和生理指标的影响 [J]. 生态学杂志, 2015, 34(7):1917−1923.HU H M, WANG L. Effects of coupling water and fertilizer on physio-morphological indices of foxtail millet at seedling stage [J]. Chinese Journal of Ecology, 2015, 34(7): 1917−1923.(in Chinese) [18] 徐雪风, 李朝周, 张俊莲. 轮作油葵对马铃薯生长发育及抗性生理指标的影响 [J]. 土壤, 2017, 49(1):83−89.XU X F, LI C Z, ZHANG J L. Effects of oil-sunflower rotation on growth and resistance physiology indexes of potato [J]. Soils, 2017, 49(1): 83−89.(in Chinese) [19] 孙乐乐, 查建军, 马志帅, 等. 不同作物对采煤复垦区表层土壤养分及酶活性的影响 [J]. 西南农业学报, 2019, 32(9):2085−2089.SUN L L, ZHA J J, MA Z S, et al. Effects of different crops on surface soil nutrients and enzyme activity in coal mining reclamation area [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2085−2089.(in Chinese) [20] 邓红艳. 连作对烤烟生长及土壤氮磷钾养分的影响 [J]. 农业与技术, 2015, 35(10):37−38.DENG H Y. Effects of continuous cropping on Flue-cured Tobacco Growth and soil nitrogen, phosphorus and potassium nutrients [J]. Agriculture and Technology, 2015, 35(10): 37−38.(in Chinese) [21] 徐雪风, 回振龙, 李自龙, 等. 马铃薯连作障碍与土壤环境因子变化相关研究 [J]. 干旱地区农业研究, 2015, 33(4):16−23. doi: 10.7606/j.issn.1000-7601.2015.04.03XU X F, HUI Z L, LI Z L, et al. Relationship between potato continuous cropping obstacle and soil environmental factors [J]. Agricultural Research in the Arid Areas, 2015, 33(4): 16−23.(in Chinese) doi: 10.7606/j.issn.1000-7601.2015.04.03 [22] 焦峰, 吕淑敏, 汪昊, 等. 三江平原草甸土水田土壤酶活性的演变特征 [J]. 安徽农业科学, 2019, 47(23):174−176. doi: 10.3969/j.issn.0517-6611.2019.23.050JIAO F, LÜ S M, WANG H, et al. Evolution characteristics of soil enzyme activities in different types of paddy fields in Sanjiang plain [J]. Journal of Anhui Agricultural Sciences, 2019, 47(23): 174−176.(in Chinese) doi: 10.3969/j.issn.0517-6611.2019.23.050 [23] 王菲, 王建宇, 贺婧, 等. 压砂瓜连作对土壤酶活性及理化性质影响 [J]. 干旱地区农业研究, 2015, 33(5):108−114. doi: 10.7606/j.issn.1000-7601.2015.05.20WANG F, WANG J Y, HE J, et al. Investigation on the effects of continuous cropping of Xisha water melon on the soil enzyme activities and physical-chemical properties [J]. Agricultural Research in the Arid Areas, 2015, 33(5): 108−114.(in Chinese) doi: 10.7606/j.issn.1000-7601.2015.05.20 [24] 张志龙, 陈效民, 曲成闯, 等. 生物质炭对黄瓜连作土壤中微生物量碳氮及酶活性的影响 [J]. 生态学杂志, 2019, 38(5):1384−1391.ZHANG Z L, CHEN X M, QU C C, et al. Effects of biochar addition on soil microbial biomass C, N and enzyme activities in cucumber continuous cropping [J]. Chinese Journal of Ecology, 2019, 38(5): 1384−1391.(in Chinese) [25] 徐继磊, 张友杰, 叶协锋, 等. 不同连作年限下烤烟不同生育期土壤微生物区系动态研究 [J]. 安徽农业科学, 2018, 46(18):105−108. doi: 10.3969/j.issn.0517-6611.2018.18.034XU J L, ZHANG Y J, YE X F, et al. Dynamics of the soil microbial flora at different growing stages of flue-cured tobacco under continuous cropping years [J]. Journal of Anhui Agricultural Sciences, 2018, 46(18): 105−108.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.18.034 [26] 万年鑫. 马铃薯不同连作方式下根际土壤效应及自毒作用研究[D]. 雅安: 四川农业大学, 2017.WAN N X. Effect of autotoxic effects of potato and different potato continuous cropping ways on rhizsophere soil[D]. Yaan: Sichuan Agricultural University, 2017 [27] 郭晓燕, 陶国峰, 张露, 等. 毛红椿凋落叶水浸液自毒作用研究 [J]. 核农学报, 2019, 33(12):2499−2508. doi: 10.11869/j.issn.100-8551.2019.12.2499GUO X Y, TAO G F, ZHANG L, et al. Autotoxicity of aqueous extracts from Toona ciliata var. pubescens leaf litter [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2499−2508.(in Chinese) doi: 10.11869/j.issn.100-8551.2019.12.2499