Effects of Planting Factors on Yield and Grain Quality of Hybrid Rice, T-Liangyoumingzhan
-
摘要:
目的 研究不同栽插密度、施钾量和施氮量对杂交稻T两优明占产量及稻米品质指标的影响,提出针对T 两优明占高产优质栽培的最优栽培措施方案。 方法 采用“311-A”试验方案,以栽插密度、施钾量和施氮量为试验因素,产量和稻米品质为目标函数,建立产量和米质指标与3项栽培因素的回归模型,进而分析3项栽培因素对T两优明占产量和米质的影响。 结果 在本试验设置的条件下,各因子取值在[−2, 2]范围内:(1)提高栽插密度,有利于提高糙米率、整精米率,降低垩白度;(2)提高施钾量,有利于提高糙米率,但会降低碱消值和直链淀粉含量,对胶稠度影响不显著。适宜的施钾量有利于提高整精米率、降低垩白度、改善透明度,施钾量过低或过高对这3个品质性状均有不利影响;(3)提高施氮量,糙米率和整精米率呈先降后升的趋势,对透明度影响不显著。适宜的施氮量有利于提高碱消值、胶稠度、直链淀粉含量,降低垩白度。 结论 合理的栽培措施可以提高T两优明占产量,改善稻米品质。综合考虑,当栽插密度19.47万~23.43 万丛·hm−2、施钾量(K2O)71.0~95.5 kg·hm−2、施氮量(N)177.0~200.2 kg·hm−2时,预测值T两优明占产量8 373.14~8 556.11 kg·hm−2,稻米品质可达国标优质稻米三级标准。 Abstract:Objective Effects of planting density and K and N applications on the yield and quality of hybrid rice, T-Liangyoumingzhan, were studied for cultivation optimization. Method The “311-A” experimental design was applied for a regression analysis on the rice yield and quality as affected by planting density and K and N application rates. The value of each evaluation factor was set to be within the range of [− 2, 2]. Results (1) By increasing the planting density in the range of 19.47-23.43 million clumps·hm−2, the rates of brown and milled head rice were increased but the grain chalkiness reduced. Little effect was observed on the alkali dissipation and gel consistency of the rice. Hence, appropriate planting density would be conducive to desirable transparency and amylose content of rice. (2) Increased K benefitted the brown rice rate but lowered the alkali dissipation value and amylose content. It exerted no significant effect on the gel consistency of the rice harvested. Improved head rice rate, reduced chalkiness, and increased transparency could be achieved with adequate application of K at 71.0-95.5 kg·hm−2. (3) Increasing N decreased the brown and head rice rates at first but increased as more N was applied. The addition of N at 177.0-200.2 kg·hm−2 range could improve alkali dissipation, gel consistency and amylose content, but not significantly on chalkiness or transparency. Conclusion Planting T-Liangyoumingzhan in the range of 19.47-23.43 million clumps·hm−2 with the applications of K2O at 71.0-95.5 kg·hm−2 and N at 177.0-200.2 kg·hm−2 was considered appropriate. Under which, a yield of 8 373.14-8 556.11 kg·hm−2 Grade-3 high quality rice could be anticipated. -
Key words:
- Planting density /
- K application rate /
- N application rate /
- rice /
- T-Liangyoumingzhan /
- yield /
- rice quality
-
表 1 因素水平编码
Table 1. Levels and codes of factors
编码值
Code value实际值
The actual value栽插密度
Density
(x1)施钾量
K Rate
(x2)施氮量
N Rate
(x3)密度
Density
(x1)/
(万丛·hm−2)K2O
(x2)/
(kg·hm−2)N
(x3)/
(kg·hm−2)−2 −2 −2 6.00 0.00 0.00 −1.414 −1.414 −1 11.25 39.56 67.50 0 0 0 24.00 135.00 135.00 1.414 1.414 1 36.60 230.45 202.50 2 2 2 42.00 270.00 270.00 表 2 试验设计方案
Table 2. Test design
处理编号
Treatment number编码值 Code value 栽插密度
Density (x1)K2O
(x2)N
(x3)1 0 0 2 2 0 0 −2 3 −1.414 −1.414 1 4 1.414 −1.414 1 5 −1.414 1.414 1 6 1.414 1.414 1 7 2 0 −1 8 −2 0 −1 9 0 2 −1 10 0 −2 −1 11 0 0 0 表 3 不同处理实收产量
Table 3. Actual yields of treatments
处理编号
Treatment number平均产量
average yield/(kg·hm−2)1 8 264.62 2 7 488.76 3 7 814.84 4 8 976.76 5 8 339.58 6 9 089.21 7 9 503.37 8 7 496.25 9 8 995.50 10 7 983.51 11 8 920.54 表 4 各试验因子不同处理的产量
Table 4. Yields of treatments based on test factor
试验因子
Factors产量 Yield/(kg·m−2) 变异系数
CV/%−2 −1.414 −1 0 1 1.414 2 栽插密度 Density(x1) 7 321.25 7 631.94 7 838.23 8 290.47 8 677.97 8 819.52 9 000.73 7.82 施钾量 K Rate(x2) 7 785.01 7 962.01 8 072.69 8 290.47 8 438.35 8 479.13 8 516.33 3.46 施氮量 N Rate(x3) 7 022.51 7 610.06 7 917.44 8 290.47 8 141.60 7 927.08 7 470.83 5.58 表 5 各稻米品质指标回归方程的偏回归系数
Table 5. Partial regression coefficients on rice quality indices
品质指标
Quality index偏回归系数 Partial regression coefficient b0 b1 b2 b3 b12 b13 b23 b11 b22 b33 糙米率 Brown rice rate 79.700 0.160 0.208 −0.037 0.213 0.035 0.058 0.106 −0.031 0.150 整精米率 Head rice rate 61.700 0.500 0.227 −0.406 0.875 0.525 −0.723 0.219 −0.569 0.388 垩白度 Chalkiness 1.400 −0.385 0.131 −0.281 0.050 0.315 −0.344 0.000 0.088 0.163 透明度 Transparency 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.000 碱消值 Alkali Digestion Value 4.800 −0.041 −0.113 0.094 0.050 −0.066 −0.063 0.034 0.022 −0.050 胶稠度 Gel consistency 78.000 −0.427 0.177 −0.500 0.750 0.073 0.177 0.625 0.375 −0.500 直链淀粉 Amylase content 15.200 −0.055 −0.121 −0.006 −0.100 0.020 −0.021 −0.084 −0.022 −0.075 表 6 稻米品质指标实测结果与预测值
Table 6. Experimental and predicted rice quality indices
品质指标
Quality index处理编号 Treatment number 1 2 3 4 5 6 7 8 9 10 11 糙米率 Brown rice rate /% 实际值 Result value 80.5 80.1 79.6 79.3 79.5 80.9 80.7 80.2 80.2 79.6 79.7 预测值 Prediction value 80.2 80.4 79.7 79.4 79.6 81 80.6 80.1 80.1 79.5 79.7 整精米率 Head rice rate /% 实际值 Result value 63.2 63.3 61.6 61 56.7 63.1 63.7 63.8 62.5 58.7 61.7 预测值 Prediction value 62.4 64.1 62 61.4 57.1 63.5 63.3 63.4 62.1 58.3 61.7 垩白度 Chalkiness /% 实际值 Result value 1.8 2.3 1.8 1.4 1 1 0.6 3.4 3.3 1.4 1.4 预测值 Prediction value 1.5 2.6 2 1.6 1.2 1.2 0.4 3.2 3.1 1.2 1.4 透明度 Transparency 实际值 Result value 1 1 2 2 2 2 2 2 2 2 1 预测值 Prediction value 1 1 2 2 2 2 2 2 2 2 1 碱消值 Alkali Digestion Value 实际值 Result value 4.7 4.5 5.5 5 4.8 4.7 4.8 4.7 4.6 4.8 4.8 预测值 Prediction value 4.8 4.4 5.5 5 4.8 4.7 4.8 4.7 4.6 4.8 4.8 胶稠度 Gel consistency /mm 实际值 Result value 76 76 80 76 78 80 80 82 80 80 78 预测值 Prediction value 75 77 80.5 76.5 78.5 80.5 79.5 81.5 79.5 79.5 78 直链淀粉 Amylase content/% 实际值 Result value 14.8 15 15 15.3 15 14.5 14.6 14.9 14.8 15.2 15.2 预测值 Prediction value 14.9 14.9 15 15.3 15 14.5 14.6 14.9 14.8 15.2 15.2 表 7 各项米质指标模拟值范围
Table 7. Ranges of simulated rice quality indices
米质指标
Rice quality indexes模拟值
Simulation取值水平 Factor level 米质等级
Rice quality gradex1 x2 x3 糙米率 Brown rice rate/% 最大值 max 82.48 2 2 2 1 最小值 min 79.00 1 −2 0 2 整精米率 Head rice rate/% 最大值 max 68.41 2 2 −2 1 最小值 min 52.00 −2 2 2 3 垩白度 Chalkiness/% 最大值 max 6.43 −2 2 −2 Normally 最小值 min 0.00 2 −2 −2 1 透明度 Transparency 最大值 max 3.00 −2 −2 2 normally 最小值 min 1.00 0 0 −2 1 碱消值 Alkali Digestion Value 最大值 max 6.04 −2 −2 2 1 最小值 min 4.28 −2 2 −2 Normally 胶稠度 Gel consistency/mm 最大值 max 86.00 −2 −2 −1 1 最小值 min 74.28 1 −2 2 1 直链淀粉 Amylase content/% 最大值 max 15.41 1 −2 0 1 最小值 min 13.71 2 2 2 1 表 8 产量8 250~9 000 kg·hm−2、垩白度≤2%、透明度≤2级、碱消值≥5的技术方案及各个指标的预测值
Table 8. Designs and predictions on rice quality indices for yield at 8 250-9 000 kg·hm−2, chalkiness≤2%, transparency≤2, and alkali digestion value≥5
项目
Item指标
Index平均取值水平 Mean value 预测值 Predicted value x1 x2 x3 产量
Yield垩白度
Chalkiness%透明度
Transparency碱消值
Alkali Digestion Value产量 Yield 8 250~9 000 kg 0.390 0.122 0.098 9 103.20 1.25 1.04 4.78 垩白度 Chalkiness ≤2% 0.462 0.026 0.333 9 106.56 1.20 1.05 4.80 透明度 Transparency ≤2级 0.000 0.000 −0.163 8 895.20 1.45 1.00 4.78 碱消值 Alkali Digestion Value ≥5 −0.630 −1.185 0.778 8 373.14 1.69 1.45 5.17 碱消值 Alkali Digestion Value ≥5的下限 −0.079 −0.732 1.207 8 556.11 1.56 1.14 5.00 -
[1] 方福平, 程式华. 论中国水稻生产能力 [J]. 中国水稻科学, 2009, 23(6):559−566. doi: 10.3969/j.issn.1001-7216.2009.06.01FANG F P, CHENG S H. Rice production capacity in china [J]. Chinese Journal of Rice Science, 2009, 23(6): 559−566.(in Chinese) doi: 10.3969/j.issn.1001-7216.2009.06.01 [2] 徐娅, 李树杏, 涂敏, 等. 氮·磷·钾肥对优质稻T香优557产量·米质及养分吸收利用的影响 [J]. 安徽农业科学, 2020, 48(20):151−156. doi: 10.3969/j.issn.0517-6611.2020.20.041XU Y, LI S X, TU M, et al. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of T Xiangyou 557 [J]. Journal of Anhui Agricultural Sciences, 2020, 48(20): 151−156.(in Chinese) doi: 10.3969/j.issn.0517-6611.2020.20.041 [3] 黄发松, 孙宗修, 胡培松, 等. 食用稻米品质形成研究的现状与展望 [J]. 中国水稻科学, 1998, 12(3):172−176. doi: 10.3321/j.issn:1001-7216.1998.03.012HUANG F S, SUN Z X, HU P S, et al. Present situations and prospects for the research on rice grain quality forming [J]. Chinese Journal of Rice Science, 1998, 12(3): 172−176.(in Chinese) doi: 10.3321/j.issn:1001-7216.1998.03.012 [4] 王伟妮, 鲁剑巍, 何予卿, 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响 [J]. 中国水稻科学, 2011, 25(6):645−653. doi: 10.3969/j.issn.1001-7216.2011.06.012WANG W N, LU J W, HE Y Q, et al. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice [J]. Chinese Journal of Rice Science, 2011, 25(6): 645−653.(in Chinese) doi: 10.3969/j.issn.1001-7216.2011.06.012 [5] 程方民, 刘正辉, 张嵩午. 稻米品质形成的气候生态条件评价及我国地域分布规律 [J]. 生态学报, 2002, 22(5):636−642. doi: 10.3321/j.issn:1000-0933.2002.05.003CHENG F M, LIU Z H, ZHANG S W. The evaluation of climatic-ecology condition for the rice quality formation and its distribution laws in China [J]. Acta Ecologica Sinica, 2002, 22(5): 636−642.(in Chinese) doi: 10.3321/j.issn:1000-0933.2002.05.003 [6] JONGDEE B, KAMOSHITA A, YAMAGISHI J, et al. Genotypic differences in grain yield of transplanted and direct-seeded rainfed lowland rice (Oryza sativa L. ) in northeastern Thailand. [J]. Field Crops Research, 2007, 102(1): 9-21. [7] LANNING S B, SIEBENMORGEN T J, COUNCE P A, , et al. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality [J]. Field Crops Research, 2011, 124(1): 132-136. [8] 董作珍, 吴良欢, 柴婕, 等. 不同氮磷钾处理对中浙优1号水稻产量、品质、养分吸收利用及经济效益的影响 [J]. 中国水稻科学, 2015, 29(4):399−407. doi: 10.3969/j.issn.1001-7216.2015.04.009DONG Z Z, WU L H, CHAI J, et al. Effects of different nitrogen, phosphorus and potassium treatments on rice yield, quality, nutrient absorption-utilization and economic benefit of Zhongzheyou 1 in central Zhejiang province, china [J]. Chinese Journal of Rice Science, 2015, 29(4): 399−407.(in Chinese) doi: 10.3969/j.issn.1001-7216.2015.04.009 [9] 从夕汉, 施伏芝, 阮新民, 等. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响 [J]. 应用生态学报, 2017, 28(4):1219−1226.CONG X H, SHI F Z, RUAN X M, et al. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties [J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1219−1226.(in Chinese) [10] 杨波, 王宝祥, 邢志鹏, 等. 施氮量对连粳15号晚直播条件下灌浆特性和米质的影响 [J]. 扬州大学学报(农业与生命科学版), 2020, 41(3):59−65.YANG B, WANG B X, XING Z P, et al. Effect of nitrogen application on grain filling characteristics and quality of Lianjing 15 under late direct seeding [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(3): 59−65.(in Chinese) [11] 石正芳. 施氮水平对水稻品种籽粒产量和米质的影响分析 [J]. 中国农业信息, 2015(8):90−91.SHI Z F. Effect of nitrogen application on grain yield and quality of rice varieties [J]. China Agricultural Information, 2015(8): 90−91.(in Chinese) [12] 文浩. 播栽期与密度对紫米稻产量形成与米质的影响[D]. 长沙: 湖南农业大学, 2017.WEN H. Effects of sowing date and density on yield formation and rice quality of purple rice[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese) [13] 包灵丰, 林纲, 赵德明, 等. 不同播期与收获期对水稻灌浆期、产量及米质的影响 [J]. 华南农业大学学报, 2017, 38(2):32−37. doi: 10.7671/j.issn.1001-411X.2017.02.007BAO L F, LIN G, ZHAO D M, et al. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality [J]. Journal of South China Agricultural University, 2017, 38(2): 32−37.(in Chinese) doi: 10.7671/j.issn.1001-411X.2017.02.007 [14] 吴勇俊, 郑海飘, 杨小粉, 等. 不同超级稻品种对移栽密度的反应特性研究 [J]. 中国稻米, 2019, 25(1):49−52. doi: 10.3969/j.issn.1006-8082.2019.01.012WU Y J, ZHENG H P, YANG X F, et al. Response characteristics of different super hybrid rice varieties to transplanting density [J]. China Rice, 2019, 25(1): 49−52.(in Chinese) doi: 10.3969/j.issn.1006-8082.2019.01.012 [15] 茆诗松. 回归分析及其试验设计[M]. 上海: 华东师范大学出版社, 1981: 255−302. [16] 徐中儒. 回归分析与试验设计[M]. 北京: 中国农业出版社, 1998: 96−123. [17] 佟立伟. 多元统计分析计算机程序[M]. 北京: 中国农业科技出版社, 1995: 240-250. [18] 李虎, 黄秋要, 陈传华, 等. 种植密度和施氮量对桂育8号产量及稻米外观和加工品质的影响 [J]. 西南农业学报, 2020, 33(4):718−724.LI H, HUANG Q Y, CHEN C H, et al. Effects of density and nitrogen fertilizer rate on yield, appearance and processing quality of high quality rice Guiyu 8 [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 718−724.(in Chinese) [19] 王强盛. 水稻钾素营养的积累特征及生理效应[D]. 南京: 南京农业大学, 2009.WANG Q S. Accumulation characteristics and physiological effects of potassium nutrition in rice [D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese) [20] 侯丹平. 不同栽培措施对稻田土壤理化特性和米质的影响[D]. 扬州: 扬州大学, 2019.HOU D P. Effects of different cultivation measures on soil physicochemical properties and rice quality in paddy fields [D]. Yangzhou: Yangzhou University, 2019. (in Chinese) [21] 滕志英, 吕宏飞, 杨国友, 等. “华粳6号”不同栽插密度和氮肥运筹对产量及米质的影响 [J]. 上海农业科技, 2014(3):46−48. doi: 10.3969/j.issn.1001-0106.2014.03.030TENG Z Y, LYU H F, YANG G Y, et al. Effects of different transplanting densities and nitrogen fertilizer application on yield and grain quality of Huajing 6 [J]. Shanghai Agricultural Science and Technology, 2014(3): 46−48.(in Chinese) doi: 10.3969/j.issn.1001-0106.2014.03.030 [22] 徐春梅, 王丹英, 邵国胜, 等. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响 [J]. 中国水稻科学, 2008, 22(5):507−512. doi: 10.3321/j.issn:1001-7216.2008.05.010XU C M, WANG D Y, SHAO G S, et al. Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22 [J]. Chinese Journal of Rice Science, 2008, 22(5): 507−512.(in Chinese) doi: 10.3321/j.issn:1001-7216.2008.05.010 [23] 乔中英, 陈培峰, 顾俊荣, 等. 氮肥运筹与栽插密度对籼粳杂交稻甬优1538产量形成和米质的影响 [J]. 西南农业学报, 2016, 29(9):2068−2073.QIAO Z Y, CHEN P F, GU J R, et al. Effects of nitrogen managements and transplanting density on yield formation and rice quality of Indica-Japonica hybrid rice Yongyou 1538 [J]. Southwest China Journal of Agricultural Sciences, 2016, 29(9): 2068−2073.(in Chinese) [24] 王强盛, 甄若宏, 丁艳锋, 等. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响 [J]. 中国农业科学, 2004, 37(10):1444−1450. doi: 10.3321/j.issn:0578-1752.2004.10.007WANG Q S, ZHEN R H, DING Y F, et al. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice [J]. Scientia Agricultura Sinica, 2004, 37(10): 1444−1450.(in Chinese) doi: 10.3321/j.issn:0578-1752.2004.10.007 [25] 张桂莲, 刘逸童, 赵瑞, 等. 不同施钾量对杂交晚稻产量和稻米品质的影响 [J]. 杂交水稻, 2018, 33(6):51−55.ZHANG G L, LIU Y T, ZHAO R, et al. Effects of different amount of potassium fertilization on grain yield and quality of late hybrid rice [J]. Hybrid Rice, 2018, 33(6): 51−55.(in Chinese) [26] 罗一鸣, 肖立中, 潘圣刚, 聂俊, 李媛, 唐湘如. 钾肥对香稻香气及稻米品质的影响 [J]. 西南农业学报, 2014, 27(3):1147−1153. doi: 10.3969/j.issn.1001-4829.2014.03.045LUO Y M, XIAO L Z, PAN S G, et al. Effects of potassium fertilizer on aroma and quality of aromatic rice [J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1147−1153.(in Chinese) doi: 10.3969/j.issn.1001-4829.2014.03.045 [27] 朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异 [J]. 中国水稻科学, 2003, 17(3):233−238. doi: 10.3321/j.issn:1001-7216.2003.03.009PIAO Z Z, HAN L Z, GAO X Z. Variations of nitrogen use efficiency by rice genotype [J]. Chinese Journal of Rice Science, 2003, 17(3): 233−238.(in Chinese) doi: 10.3321/j.issn:1001-7216.2003.03.009 [28] KARROU M, NACHIT M. Durum wheat genotypic variation of yield and nitrogen use efficiency and its components under different water and nitrogen regimes in the mediterranean region[J]. Journal of Plant Nutrition, 2015, 38(14): 2259-2278. [29] 魏海燕, 王亚江, 孟天瑶, 等. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应 [J]. 应用生态学报, 2014, 25(2):488−496.WEI H Y, WANG Y J, MENG T Y, et al. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice [J]. Chinese Journal of Applied Ecology, 2014, 25(2): 488−496.(in Chinese) [30] 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响[D]. 扬州: 扬州大学, 2018.ZHU D W. Effects of three key cultivation measures on yield and quality of japonica soft rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)