• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

解磷真菌JL-7的筛选及其作用于低品位磷矿的肥效研究

李小军 吉俐 张景宁 盛定红 谢承卫

李小军,吉俐,张景宁,等. 解磷真菌JL-7的筛选及其作用于低品位磷矿的肥效研究 [J]. 福建农业学报,2022,37(9):1237−1244 doi: 10.19303/j.issn.1008-0384.2022.009.017
引用本文: 李小军,吉俐,张景宁,等. 解磷真菌JL-7的筛选及其作用于低品位磷矿的肥效研究 [J]. 福建农业学报,2022,37(9):1237−1244 doi: 10.19303/j.issn.1008-0384.2022.009.017
LI X J, JI L, ZHANG J N, et al. Efficiency Improvement of Low-grade Phosphorus Fertilizer by Phosphate-solubilizing Fungus JL-7 [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1237−1244 doi: 10.19303/j.issn.1008-0384.2022.009.017
Citation: LI X J, JI L, ZHANG J N, et al. Efficiency Improvement of Low-grade Phosphorus Fertilizer by Phosphate-solubilizing Fungus JL-7 [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1237−1244 doi: 10.19303/j.issn.1008-0384.2022.009.017

解磷真菌JL-7的筛选及其作用于低品位磷矿的肥效研究

doi: 10.19303/j.issn.1008-0384.2022.009.017
基金项目: 贵州省科学技术基金项目(20171028) ;贵州省科技厅科技支撑计划项目(黔科合[2016]2808号);中国烟草总公司贵州省公司科技项目(201708)
详细信息
    作者简介:

    李小军(1998−),男,硕士研究生,主要从事微生物肥料研究(E-mail:846736603@qq.com

    通讯作者:

    谢承卫(1964−),男,教授,主要从事微生物、烟草肥料及各类矿产资源的应用研究工作(E-mail:cwxie@gzu.edu.cn

  • 中图分类号: S 154

Efficiency Improvement of Low-grade Phosphorus Fertilizer by Phosphate-solubilizing Fungus JL-7

  • 摘要:   目的  针对我国低品位磷矿资源利用率低、耕地土壤有效磷含量低以及传统化肥的大量使用造成的土壤易固化等一系列问题,筛选可解离低品位磷矿的高效菌株,为低品位磷矿的资源利用提供途径。  方法  以砂培法从贵州铜仁烟草种植基地土壤中筛选出一株新型解磷真菌,将其命名为JL-7,经过生理生化试验和分子生物学鉴定该菌为烟曲霉菌(Aspergillus fumigatiaffinis)。采用单因素和正交试验对该菌的解磷性能进行优化,在最佳优化条件下制备微生物菌肥并通过烟草盆栽试验进行肥效验证。  结果  从烟草根际土壤中筛选的真菌JL-7在优化条件(接菌量1×105 cfu·mL−1、初始pH 6、解离时间8 d、解离温度26 ℃)下对低品位磷矿的最高解磷量达到967.4 mg·kg−1,真菌解离液中pH可降低至2.9左右。以高效解磷菌株JL-7制备菌肥,通过烟草盆栽种植试验,该菌肥对烟草(云烟87)的茎围、株高、最大叶面积分别提升44.60%、57.29%、62.90%。种植后对土壤进行分析,结果表明,该菌肥对土壤中的有效磷、速效钾、碱解氮含量分别提升48.5%、3.7%、9.1%。  结论  菌株JL-7解磷效果优异且性能稳定,具有制备新型微生物肥料的潜力,具备一定的推广及应用价值。
  • 图  1  JL-7的生长变化过程及显微图

    a:初生菌丝生长情况;b:5天后菌落生长情况;c、d:9天后菌落生长情况和平板背面观察到的菌落外观;e、f:光学显微镜下放大1 000倍观察到的真菌菌丝和分生孢子梗。

    Figure  1.  Growth and change process and micrograph of JL-7

    a: Growth of primary mycelium; b: growth of colony after 5 d; c and d: growth of colony after 9 d and rear view of colony on plate; e and f: fungal mycelium and conidiophore under optical microscope (1 000×).

    图  2  JL-7的系统发育树

    Figure  2.  Phylogenetic tree of JL-7

    图  3  菌株JL-7的生长曲线及真菌解离液中pH的变化曲线

    Figure  3.  Growth curve of JL-7 and pH changes of phosphae-dissociation solution

    图  4  不同因素对真菌JL-7解磷量的影响

    Figure  4.  Effect of various factors on phosphate solubilization of JL-7

    图  5  菌肥对烟草生长促进效果

    图中不同小写字母表示差异显著(P<0.05)。

    Figure  5.  Effect of fungal fertilization enhancer on tobacco growth

    Data with different lowercase letters indicate significant differences (P<0.05).

    表  1  JL-7的生理生化试验结果

    Table  1.   Physiological and biochemical test results on JL-7

    项目
    Item
    结果
    Result
    项目
    Item
    结果
    Result
    项目
    Item
    结果
    Result
    D-阿拉伯糖 D-核糖 + 麦芽三糖 +
    L-阿拉伯糖 + D-棉子糖 + N-乙酰-半乳糖胺 +
    D-纤维二糖 + L-鼠李糖 + N-乙酰-葡萄糖胺 +
    L-山梨糖 D-甘露糖 + N-乙酰-甘露糖胺 +
    D-果糖 + D-松三糖 + D-葡萄糖胺 +
    L-岩藻糖 + D-蜜二糖 + 葡糖醛酰胺
    D-半乳糖 D-塔格糖 + 丙酸胺 +
    +表示阳性反应;−表示阴性反应。
    + means positive reaction; − means negative reaction.
    下载: 导出CSV

    表  2  单因素设计的L9(3)4正交试验表

    Table  2.   L9(3)4 orthogonal experiment design with single factor experiment

    因素
    Level
    接菌量
    Inoculation
    amount/(cfu·mL−1)
    初始pH
    Initial pH
    解离时间
    Dissociation
    time/d
    解离温度
    Dissociation
    temperature/ ℃
    11×1045626
    21×1056728
    31×1067830
    下载: 导出CSV

    表  3  正交试验对菌株JL-7解磷条件的优化结果

    Table  3.   Orthogonal optimized conditions for JL-7 phosphate solubilization

    因素
    Level
    接菌量
    Inoculation amount/(cfu·mL−1)
    初始pH
    Initial pH
    解离时间
    Dissociation time/d
    解离温度
    Dissociation temperature/ ℃
    有效磷含量
    Available phosphorus/(mg·kg−1)
    11×1045626779. 8
    21×1046728811.3
    31×1047830793.1
    41×1055730852.5
    51×1056826872.9
    61×1057628828.8
    71×1065828837.6
    81×1066630812.1
    91×1067726803.6
    K1794.733823.300806.900818.767
    K2851.400832.100822.467825.900
    K3817.767805.500834.533819.233
    极差 R56.66723.60027.6337.133
    下载: 导出CSV

    表  4  菌肥对土壤肥力的影响

    Table  4.   Effect of fungal fertilization enhancer on soil fertility (mg·kg−1

    处理方式
    Processing method
    碱解氮
    Alkali-hydrolyzable nitrogen
    有效磷
    Available phosphorus
    速效钾
    Available potassium
    CK(对照)107.47±2.09 c58.87±2.56 c139.20±1.06 b
    A(施用A菌肥)124.43±1.94 a73.10±2.59 b144.45±2.17 a
    B(施用B菌肥)117.17±2.65 b87.41±0.97 a144.42±1.88 a
    同列数据后不同小写字母表示差异显著(P<0.05)。
    Data with different letters on the same column indicate significant differences (P<0.05).
    下载: 导出CSV
  • [1] SHAHZAD S M, ARIF M S, RIAZ M, et al. Interaction of compost additives with phosphate solubilizing rhizobacteria improved maize production and soil biochemical properties under dryland agriculture [J]. Soil and Tillage Research, 2017, 174(12): 70−80.
    [2] VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants [J]. The New Phytologist, 2012, 195(2): 306−320. doi: 10.1111/j.1469-8137.2012.04190.x
    [3] TALLAPRAGADA P, SESHACHALA U. Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India [J]. Turkish Journal of Biology, 2012, 36(1): 25−35.
    [4] ZHANG J, FENG L, OUYANG Y, et al. 2020. Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China [J]. Catena, 2020, 195(5): 41−62.
    [5] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展 [J]. 微生物学杂志, 2021, 41(1):1−7. doi: 10.3969/j.issn.1005-7021.2021.01.001

    CHI J L, HAO M, WANG Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism [J]. Journal of Microbiology, 2021, 41(1): 1−7.(in Chinese) doi: 10.3969/j.issn.1005-7021.2021.01.001
    [6] 王向英, 武欣, 张杰, 等. 解磷菌在复垦土壤中的定殖及促生效果研究 [J]. 东北农业大学学报, 2021, 52(7):40−47. doi: 10.3969/j.issn.1005-9369.2021.07.005

    WANG X Y, WU X, ZHANG J, et al. Colonization of phosphate-solubilizing bacteria in reclaimed soil and the growth-promoting effects on maize [J]. Journal of Northeast Agricultural University, 2021, 52(7): 40−47.(in Chinese) doi: 10.3969/j.issn.1005-9369.2021.07.005
    [7] 张云霞, 雷鹏, 许宗奇, 等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响 [J]. 江苏农业学报, 2016, 32(5):1073−1080. doi: 10.3969/j.issn.1000-4440.2016.05.019

    ZHANG Y X, LEI P, XU Z Q, et al. Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 1073−1080.(in Chinese) doi: 10.3969/j.issn.1000-4440.2016.05.019
    [8] 林志伟, 肖翠红, 白鑫雨, 等. 解磷菌DQ-N对大豆种子萌发及苗期生长的影响 [J]. 大豆科学, 2021(5):676−681.

    LIN Z W, XIAO C H, BAI X Y, et al. Effects of DQ-N strain on seed germination and seedling growth of soybean [J]. Soybean Science, 2021(5): 676−681.(in Chinese)
    [9] AHMAD A, ZAFAR U, KHAN A, et al. Effectiveness of compost inoculated with phosphate solubilizing bacteria [J]. Journal of Applied Microbiology, 2022, 133(2): 1115−1129. doi: 10.1111/jam.15633
    [10] 鲁如坤. 土壤磷素水平和水体环境保护 [J]. 磷肥与复肥, 2003, 18(1):4−8. doi: 10.3969/j.issn.1007-6220.2003.01.002

    LU R K. The phosphorus level of soil and environmental protection of water body [J]. Phosphate & Compound Fertilizer, 2003, 18(1): 4−8.(in Chinese) doi: 10.3969/j.issn.1007-6220.2003.01.002
    [11] ANZUAY M S, CIANCIO M G R, LUDUEÑA L M, et al. Growth promotion of peanut (Arachis hypogaea L. ) and maize (Zea mays L. ) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides [J]. Microbiological Research, 2017, 199: 98−109. doi: 10.1016/j.micres.2017.03.006
    [12] 唐哲, 杨洪一, 李丽丽. 解磷真菌的研究进展与应用前景 [J]. 安徽农业科学, 2014(32):11287−11288,11296. doi: 10.3969/j.issn.0517-6611.2014.32.022

    TANG Z, YANG H Y, LI L L. Advance and application prospect of phosphate-solubilizing fungi [J]. Journal of Anhui Agricultural Sciences, 2014(32): 11287−11288,11296.(in Chinese) doi: 10.3969/j.issn.0517-6611.2014.32.022
    [13] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究 [J]. 微生物学报, 2002, 42(2):236−241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms [J]. Acta Microbiologica Sinica, 2002, 42(2): 236−241.(in Chinese) doi: 10.3321/j.issn:0001-6209.2002.02.017
    [14] SHIRMOHAMMADI E, ALIKHANI H A, POURBABAEI A A, et al. Improved phosphorus (P) uptake and yield of rainfed wheat fed with P fertilizer by drought-tolerant phosphate-solubilizing fluorescent pseudomonads strains: A field study in drylands [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2195−2211. doi: 10.1007/s42729-020-00287-x
    [15] 刘洋, 洪坚平, 卫迎. 接种AM真菌与解磷细菌对矿区复垦土壤磷形态及油菜产量的影响 [J]. 山西农业科学, 2018(5):785−790,861. doi: 10.3969/j.issn.1002-2481.2018.05.27

    LIU Y, HONG J P, WEI Y. Effects of inoculation of AM fungi and phosphate solubilizing bacteria on phosphorus morphology and rape yield in reclaimed soil in mining area [J]. Journal of Shanxi Agricultural Sciences, 2018(5): 785−790,861.(in Chinese) doi: 10.3969/j.issn.1002-2481.2018.05.27
    [16] IWASAKI S, FUKUDA M, IKAZAKI K, et al. Optimal P fertilization using low-grade phosphate rock-derived fertilizer for rice cultivation under different ground-water conditions in the Central Plateau of Burkina Faso [J]. Soil Science and Plant Nutrition, 2021, 67(4): 460−470. doi: 10.1080/00380768.2021.1932584
    [17] CALLE-CASTANEDA S M, MARQUEZ-GODOY M A, HERNANDEZ-ORTIZ J P. Phosphorus recovery from high concentrations of low-grade phosphate rocks using the biogenic acid produced by the acidophilic bacteria Acidithiobacillus thiooxidans [J]. Minerals Engineering, 2018, 115(1): 97−105.
    [18] 李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性 [J]. 应用生态学报, 2019, 30(7):2384−2392. doi: 10.13287/j.1001-9332.201907.033

    LI D D, SHANG S H, HAN W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus [J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2384−2392.(in Chinese) doi: 10.13287/j.1001-9332.201907.033
    [19] 杨锦发. 多目标生态地球化学土壤样品高精度测试与质量监控 [J]. 岩矿测试, 2007, 26(1):36−39. doi: 10.3969/j.issn.0254-5357.2007.01.010

    YANG J F. High precision measurements and quantity monitoring and control for soil sample analysis in eco-geochemistry survey [J]. Rock and Mineral Analysis, 2007, 26(1): 36−39.(in Chinese) doi: 10.3969/j.issn.0254-5357.2007.01.010
    [20] 马卫, 刘诚, 邵闯, 等. 一株高效溶磷真菌MEM07的筛选鉴定及其溶磷条件优化 [J]. 绿色科技, 2017(20):193−195. doi: 10.16663/j.cnki.lskj.2017.20.068

    MA W, LIU C, SHAO C, et al. Screening and identification of a high-efficiency phosphate-dissolving fungus MEM07 and optimization of its phosphate-dissolving conditions [J]. Journal of Green Science and Technology, 2017(20): 193−195.(in Chinese) doi: 10.16663/j.cnki.lskj.2017.20.068
    [21] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 第2版. 北京: 中国农业出版社, 2006.
    [22] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979.
    [23] 柴文亚, 李红丽, 王勇, 等. 生物有机肥防治烟草黑胫病效果及对烟株生长发育的影响 [J]. 天津农业科学, 2014, 20(4):24−27. doi: 10.3969/j.issn.1006-6500.2014.04.008

    CHAI W Y, LI H L, WANG Y, et al. Effect of bio-organic fertilizer on prevention and control of tobacco black shank disease and its influence on tobacco growth [J]. Tianjin Agricultural Sciences, 2014, 20(4): 24−27.(in Chinese) doi: 10.3969/j.issn.1006-6500.2014.04.008
    [24] 汤宏, 李向阳, 曾掌权, 等. 不同施磷量对烟草生长及产量的影响 [J]. 华北农学报, 2018(S1):201−207. doi: 10.7668/hbnxb.2018.S1.033

    TANG H, LI X Y, ZENG Z Q, et al. Effects of different phosphorus application rate on growth and yield of tobacco [J]. Acta Agriculturae Boreali-Sinica, 2018(S1): 201−207.(in Chinese) doi: 10.7668/hbnxb.2018.S1.033
    [25] 李玥, 赖勇林, 王军, 等. 不同养分缺乏对烤烟根系形态及营养生长的影响 [J]. 中国烟草科学, 2015, 36(2):60−65. doi: 10.13496/j.issn.1007-5119.2015.02.011

    LI Y, LAI Y L, WANG J, et al. Effect of different nutrient deficiencies on root morphology and vegetative growth in flue-cured tobacco [J]. Chinese Tobacco Science, 2015, 36(2): 60−65.(in Chinese) doi: 10.13496/j.issn.1007-5119.2015.02.011
    [26] 李静, 艾加敏, 余天飞, 等. 一株溶磷真菌的鉴定及其促生特性研究 [J]. 福建农业学报, 2021(10):1224−1230. doi: 10.19303/j.issn.1008-0384.2021.10.015

    LI J, AI J M, YU T F, et al. Identification and growth-promoting effect of a phosphate-solubilizing fungus on wheat seedlings [J]. Fujian Journal of Agricultural Sciences, 2021(10): 1224−1230.(in Chinese) doi: 10.19303/j.issn.1008-0384.2021.10.015
    [27] ALIYAT F Z, MALDANI M, EL GUILLI M, et al. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates [J]. Microorganisms, 2022, 10(5): 980. doi: 10.3390/microorganisms10050980
    [28] MONROY MIGUEL R, CARRILLO GONZÁLEZ R, RIOS LEAL E, et al. Screening bacterial phosphate solubilization with bulk-tricalcium phosphate and hydroxyapatite nanoparticles [J]. Antonie Van Leeuwenhoek, 2020, 113(7): 1033−1047. doi: 10.1007/s10482-020-01409-2
    [29] 刘娟, 张乃明, 何云. 黑曲霉素J4对中低品位磷矿粉的溶磷效果及重金属释放的影响 [J]. 生态环境学报, 2020, 29(6):1260−1267. doi: 10.16258/j.cnki.1674-5906.2020.06.023

    LIU J, ZHANG N M, HE Y. Effect of Niger Aspergillus J4 on phosphate dissolution and release of heavy metals in medium and low grade phosphate powder [J]. Ecology and Environment Sciences, 2020, 29(6): 1260−1267.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.06.023
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  211
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-05
  • 录用日期:  2022-03-05
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-10-05
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回