Efficiency Improvement of Low-grade Phosphorus Fertilizer by Phosphate-solubilizing Fungus JL-7
-
摘要:
目的 针对我国低品位磷矿资源利用率低、耕地土壤有效磷含量低以及传统化肥的大量使用造成的土壤易固化等一系列问题,筛选可解离低品位磷矿的高效菌株,为低品位磷矿的资源利用提供途径。 方法 以砂培法从贵州铜仁烟草种植基地土壤中筛选出一株新型解磷真菌,将其命名为JL-7,经过生理生化试验和分子生物学鉴定该菌为烟曲霉菌(Aspergillus fumigatiaffinis)。采用单因素和正交试验对该菌的解磷性能进行优化,在最佳优化条件下制备微生物菌肥并通过烟草盆栽试验进行肥效验证。 结果 从烟草根际土壤中筛选的真菌JL-7在优化条件(接菌量1×105 cfu·mL−1、初始pH 6、解离时间8 d、解离温度26 ℃)下对低品位磷矿的最高解磷量达到967.4 mg·kg−1,真菌解离液中pH可降低至2.9左右。以高效解磷菌株JL-7制备菌肥,通过烟草盆栽种植试验,该菌肥对烟草(云烟87)的茎围、株高、最大叶面积分别提升44.60%、57.29%、62.90%。种植后对土壤进行分析,结果表明,该菌肥对土壤中的有效磷、速效钾、碱解氮含量分别提升48.5%、3.7%、9.1%。 结论 菌株JL-7解磷效果优异且性能稳定,具有制备新型微生物肥料的潜力,具备一定的推广及应用价值。 Abstract:Objective A fungal strain highly efficient in dissociating low-grade phosphorus ore for fertilization was isolated to determine the applicability. Method Soil samples at Guizhou Tongren Tobacco Planting Base were screened using the sand culture method for fungi that exhibited capability to solubilize phosphate. The selected isolate was identified by physiological, biochemical, and molecular biological tests. Conditions for optimal phosphate solubilization were determined by single factor and orthogonal experiments. Effect of the fungal addition on fertilization was verified by a pot test conducted on tobacco seedlings. Result The selected isolate was code-named JL-7 and, subsequently, identified to be a strain of Aspergillus fumigatiaffinis. The optimized conditions to maximize the phosphate-solubilization of JL-7 applied an inoculation at the rate of 1×105 cfu·mL−1 with an initial pH of 6 to incubate at 26 ℃ for 8 d. The process dissolved a low-grade phosphorus ore material up to 967.4 mg·kg−1 with the resulting solution reduced to approximately pH 2.9. In the pot experiment, the Yunyan 87 tobacco seedlings grown on a medium with the addition of a JL-7-inoculated phosphorus fertilizer had the stem girth, plant height, and maximum leaf area increased by 44.60%, 57.29%, and 62.90%, respectively, over control. Meanwhile, the pot soil increased 48.5% on available phosphorus, 3.7% on available potassium, and 9.1% on alkali-hydrolysable nitrogen after the planting as well. Conclusion The identified strongly phosphate-solubilizing Fungus JL-7 displayed a significant and consistent ability of dissolving phosphate. It was considered a potential candidate to be widely promoted as a microbial fertilization enhancer. -
图 1 JL-7的生长变化过程及显微图
a:初生菌丝生长情况;b:5天后菌落生长情况;c、d:9天后菌落生长情况和平板背面观察到的菌落外观;e、f:光学显微镜下放大1 000倍观察到的真菌菌丝和分生孢子梗。
Figure 1. Growth and change process and micrograph of JL-7
a: Growth of primary mycelium; b: growth of colony after 5 d; c and d: growth of colony after 9 d and rear view of colony on plate; e and f: fungal mycelium and conidiophore under optical microscope (1 000×).
表 1 JL-7的生理生化试验结果
Table 1. Physiological and biochemical test results on JL-7
项目
Item结果
Result项目
Item结果
Result项目
Item结果
ResultD-阿拉伯糖 − D-核糖 + 麦芽三糖 + L-阿拉伯糖 + D-棉子糖 + N-乙酰-半乳糖胺 + D-纤维二糖 + L-鼠李糖 + N-乙酰-葡萄糖胺 + L-山梨糖 − D-甘露糖 + N-乙酰-甘露糖胺 + D-果糖 + D-松三糖 + D-葡萄糖胺 + L-岩藻糖 + D-蜜二糖 + 葡糖醛酰胺 − D-半乳糖 − D-塔格糖 + 丙酸胺 + +表示阳性反应;−表示阴性反应。
+ means positive reaction; − means negative reaction.表 2 单因素设计的L9(3)4正交试验表
Table 2. L9(3)4 orthogonal experiment design with single factor experiment
因素
Level接菌量
Inoculation
amount/(cfu·mL−1)初始pH
Initial pH解离时间
Dissociation
time/d解离温度
Dissociation
temperature/ ℃1 1×104 5 6 26 2 1×105 6 7 28 3 1×106 7 8 30 表 3 正交试验对菌株JL-7解磷条件的优化结果
Table 3. Orthogonal optimized conditions for JL-7 phosphate solubilization
因素
Level接菌量
Inoculation amount/(cfu·mL−1)初始pH
Initial pH解离时间
Dissociation time/d解离温度
Dissociation temperature/ ℃有效磷含量
Available phosphorus/(mg·kg−1)1 1×104 5 6 26 779. 8 2 1×104 6 7 28 811.3 3 1×104 7 8 30 793.1 4 1×105 5 7 30 852.5 5 1×105 6 8 26 872.9 6 1×105 7 6 28 828.8 7 1×106 5 8 28 837.6 8 1×106 6 6 30 812.1 9 1×106 7 7 26 803.6 K1 794.733 823.300 806.900 818.767 K2 851.400 832.100 822.467 825.900 K3 817.767 805.500 834.533 819.233 极差 R 56.667 23.600 27.633 7.133 表 4 菌肥对土壤肥力的影响
Table 4. Effect of fungal fertilization enhancer on soil fertility
(mg·kg−1) 处理方式
Processing method碱解氮
Alkali-hydrolyzable nitrogen有效磷
Available phosphorus速效钾
Available potassiumCK(对照) 107.47±2.09 c 58.87±2.56 c 139.20±1.06 b A(施用A菌肥) 124.43±1.94 a 73.10±2.59 b 144.45±2.17 a B(施用B菌肥) 117.17±2.65 b 87.41±0.97 a 144.42±1.88 a 同列数据后不同小写字母表示差异显著(P<0.05)。
Data with different letters on the same column indicate significant differences (P<0.05). -
[1] SHAHZAD S M, ARIF M S, RIAZ M, et al. Interaction of compost additives with phosphate solubilizing rhizobacteria improved maize production and soil biochemical properties under dryland agriculture [J]. Soil and Tillage Research, 2017, 174(12): 70−80. [2] VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants [J]. The New Phytologist, 2012, 195(2): 306−320. doi: 10.1111/j.1469-8137.2012.04190.x [3] TALLAPRAGADA P, SESHACHALA U. Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India [J]. Turkish Journal of Biology, 2012, 36(1): 25−35. [4] ZHANG J, FENG L, OUYANG Y, et al. 2020. Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China [J]. Catena, 2020, 195(5): 41−62. [5] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展 [J]. 微生物学杂志, 2021, 41(1):1−7. doi: 10.3969/j.issn.1005-7021.2021.01.001CHI J L, HAO M, WANG Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism [J]. Journal of Microbiology, 2021, 41(1): 1−7.(in Chinese) doi: 10.3969/j.issn.1005-7021.2021.01.001 [6] 王向英, 武欣, 张杰, 等. 解磷菌在复垦土壤中的定殖及促生效果研究 [J]. 东北农业大学学报, 2021, 52(7):40−47. doi: 10.3969/j.issn.1005-9369.2021.07.005WANG X Y, WU X, ZHANG J, et al. Colonization of phosphate-solubilizing bacteria in reclaimed soil and the growth-promoting effects on maize [J]. Journal of Northeast Agricultural University, 2021, 52(7): 40−47.(in Chinese) doi: 10.3969/j.issn.1005-9369.2021.07.005 [7] 张云霞, 雷鹏, 许宗奇, 等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响 [J]. 江苏农业学报, 2016, 32(5):1073−1080. doi: 10.3969/j.issn.1000-4440.2016.05.019ZHANG Y X, LEI P, XU Z Q, et al. Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 1073−1080.(in Chinese) doi: 10.3969/j.issn.1000-4440.2016.05.019 [8] 林志伟, 肖翠红, 白鑫雨, 等. 解磷菌DQ-N对大豆种子萌发及苗期生长的影响 [J]. 大豆科学, 2021(5):676−681.LIN Z W, XIAO C H, BAI X Y, et al. Effects of DQ-N strain on seed germination and seedling growth of soybean [J]. Soybean Science, 2021(5): 676−681.(in Chinese) [9] AHMAD A, ZAFAR U, KHAN A, et al. Effectiveness of compost inoculated with phosphate solubilizing bacteria [J]. Journal of Applied Microbiology, 2022, 133(2): 1115−1129. doi: 10.1111/jam.15633 [10] 鲁如坤. 土壤磷素水平和水体环境保护 [J]. 磷肥与复肥, 2003, 18(1):4−8. doi: 10.3969/j.issn.1007-6220.2003.01.002LU R K. The phosphorus level of soil and environmental protection of water body [J]. Phosphate & Compound Fertilizer, 2003, 18(1): 4−8.(in Chinese) doi: 10.3969/j.issn.1007-6220.2003.01.002 [11] ANZUAY M S, CIANCIO M G R, LUDUEÑA L M, et al. Growth promotion of peanut (Arachis hypogaea L. ) and maize (Zea mays L. ) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides [J]. Microbiological Research, 2017, 199: 98−109. doi: 10.1016/j.micres.2017.03.006 [12] 唐哲, 杨洪一, 李丽丽. 解磷真菌的研究进展与应用前景 [J]. 安徽农业科学, 2014(32):11287−11288,11296. doi: 10.3969/j.issn.0517-6611.2014.32.022TANG Z, YANG H Y, LI L L. Advance and application prospect of phosphate-solubilizing fungi [J]. Journal of Anhui Agricultural Sciences, 2014(32): 11287−11288,11296.(in Chinese) doi: 10.3969/j.issn.0517-6611.2014.32.022 [13] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究 [J]. 微生物学报, 2002, 42(2):236−241. doi: 10.3321/j.issn:0001-6209.2002.02.017ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms [J]. Acta Microbiologica Sinica, 2002, 42(2): 236−241.(in Chinese) doi: 10.3321/j.issn:0001-6209.2002.02.017 [14] SHIRMOHAMMADI E, ALIKHANI H A, POURBABAEI A A, et al. Improved phosphorus (P) uptake and yield of rainfed wheat fed with P fertilizer by drought-tolerant phosphate-solubilizing fluorescent pseudomonads strains: A field study in drylands [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2195−2211. doi: 10.1007/s42729-020-00287-x [15] 刘洋, 洪坚平, 卫迎. 接种AM真菌与解磷细菌对矿区复垦土壤磷形态及油菜产量的影响 [J]. 山西农业科学, 2018(5):785−790,861. doi: 10.3969/j.issn.1002-2481.2018.05.27LIU Y, HONG J P, WEI Y. Effects of inoculation of AM fungi and phosphate solubilizing bacteria on phosphorus morphology and rape yield in reclaimed soil in mining area [J]. Journal of Shanxi Agricultural Sciences, 2018(5): 785−790,861.(in Chinese) doi: 10.3969/j.issn.1002-2481.2018.05.27 [16] IWASAKI S, FUKUDA M, IKAZAKI K, et al. Optimal P fertilization using low-grade phosphate rock-derived fertilizer for rice cultivation under different ground-water conditions in the Central Plateau of Burkina Faso [J]. Soil Science and Plant Nutrition, 2021, 67(4): 460−470. doi: 10.1080/00380768.2021.1932584 [17] CALLE-CASTANEDA S M, MARQUEZ-GODOY M A, HERNANDEZ-ORTIZ J P. Phosphorus recovery from high concentrations of low-grade phosphate rocks using the biogenic acid produced by the acidophilic bacteria Acidithiobacillus thiooxidans [J]. Minerals Engineering, 2018, 115(1): 97−105. [18] 李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性 [J]. 应用生态学报, 2019, 30(7):2384−2392. doi: 10.13287/j.1001-9332.201907.033LI D D, SHANG S H, HAN W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus [J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2384−2392.(in Chinese) doi: 10.13287/j.1001-9332.201907.033 [19] 杨锦发. 多目标生态地球化学土壤样品高精度测试与质量监控 [J]. 岩矿测试, 2007, 26(1):36−39. doi: 10.3969/j.issn.0254-5357.2007.01.010YANG J F. High precision measurements and quantity monitoring and control for soil sample analysis in eco-geochemistry survey [J]. Rock and Mineral Analysis, 2007, 26(1): 36−39.(in Chinese) doi: 10.3969/j.issn.0254-5357.2007.01.010 [20] 马卫, 刘诚, 邵闯, 等. 一株高效溶磷真菌MEM07的筛选鉴定及其溶磷条件优化 [J]. 绿色科技, 2017(20):193−195. doi: 10.16663/j.cnki.lskj.2017.20.068MA W, LIU C, SHAO C, et al. Screening and identification of a high-efficiency phosphate-dissolving fungus MEM07 and optimization of its phosphate-dissolving conditions [J]. Journal of Green Science and Technology, 2017(20): 193−195.(in Chinese) doi: 10.16663/j.cnki.lskj.2017.20.068 [21] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 第2版. 北京: 中国农业出版社, 2006. [22] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979. [23] 柴文亚, 李红丽, 王勇, 等. 生物有机肥防治烟草黑胫病效果及对烟株生长发育的影响 [J]. 天津农业科学, 2014, 20(4):24−27. doi: 10.3969/j.issn.1006-6500.2014.04.008CHAI W Y, LI H L, WANG Y, et al. Effect of bio-organic fertilizer on prevention and control of tobacco black shank disease and its influence on tobacco growth [J]. Tianjin Agricultural Sciences, 2014, 20(4): 24−27.(in Chinese) doi: 10.3969/j.issn.1006-6500.2014.04.008 [24] 汤宏, 李向阳, 曾掌权, 等. 不同施磷量对烟草生长及产量的影响 [J]. 华北农学报, 2018(S1):201−207. doi: 10.7668/hbnxb.2018.S1.033TANG H, LI X Y, ZENG Z Q, et al. Effects of different phosphorus application rate on growth and yield of tobacco [J]. Acta Agriculturae Boreali-Sinica, 2018(S1): 201−207.(in Chinese) doi: 10.7668/hbnxb.2018.S1.033 [25] 李玥, 赖勇林, 王军, 等. 不同养分缺乏对烤烟根系形态及营养生长的影响 [J]. 中国烟草科学, 2015, 36(2):60−65. doi: 10.13496/j.issn.1007-5119.2015.02.011LI Y, LAI Y L, WANG J, et al. Effect of different nutrient deficiencies on root morphology and vegetative growth in flue-cured tobacco [J]. Chinese Tobacco Science, 2015, 36(2): 60−65.(in Chinese) doi: 10.13496/j.issn.1007-5119.2015.02.011 [26] 李静, 艾加敏, 余天飞, 等. 一株溶磷真菌的鉴定及其促生特性研究 [J]. 福建农业学报, 2021(10):1224−1230. doi: 10.19303/j.issn.1008-0384.2021.10.015LI J, AI J M, YU T F, et al. Identification and growth-promoting effect of a phosphate-solubilizing fungus on wheat seedlings [J]. Fujian Journal of Agricultural Sciences, 2021(10): 1224−1230.(in Chinese) doi: 10.19303/j.issn.1008-0384.2021.10.015 [27] ALIYAT F Z, MALDANI M, EL GUILLI M, et al. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates [J]. Microorganisms, 2022, 10(5): 980. doi: 10.3390/microorganisms10050980 [28] MONROY MIGUEL R, CARRILLO GONZÁLEZ R, RIOS LEAL E, et al. Screening bacterial phosphate solubilization with bulk-tricalcium phosphate and hydroxyapatite nanoparticles [J]. Antonie Van Leeuwenhoek, 2020, 113(7): 1033−1047. doi: 10.1007/s10482-020-01409-2 [29] 刘娟, 张乃明, 何云. 黑曲霉素J4对中低品位磷矿粉的溶磷效果及重金属释放的影响 [J]. 生态环境学报, 2020, 29(6):1260−1267. doi: 10.16258/j.cnki.1674-5906.2020.06.023LIU J, ZHANG N M, HE Y. Effect of Niger Aspergillus J4 on phosphate dissolution and release of heavy metals in medium and low grade phosphate powder [J]. Ecology and Environment Sciences, 2020, 29(6): 1260−1267.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.06.023