Physiological Response and Molecular Mechanism of Rice to Salt-stress
-
摘要:
目的 研究不同耐盐性水稻材料应答高盐胁迫的生理及分子机理,对筛选和培育耐盐水稻新品种具有重要的参考价值。 方法 分别以耐盐水稻品系X1、X2、X3和盐敏感水稻品系X20、X30为试验材料,分析其在高盐胁迫(200 mmol·L−1 NaCl的1/2KB溶液)条件下的生理代谢及耐盐相关功能基因表达差异。 结果 在高盐胁迫条件下,耐盐水稻材料体内脯氨酸及可溶性糖含量、超氧化物歧化酶及过氧化氢酶的活性,以及耐盐相关功能基因OsP5CS1、OsProt、OsCu/Zn-SOD、OsAPX2、OsNCED3及OsNCED5的表达水平明显高于盐敏感型,而丙二醛和过氧化氢含量明显低于盐敏感型。 结论 耐盐性水稻材料主要通过提高渗透调节能力、活性氧清除能力及耐盐相关功能基因的表达来提高其耐盐性。 Abstract:Objective Physiological response and molecular mechanism of different salt-tolerant rice lines in dealing with high salt stress were studied to facilitate screening and breeding resistant varieties. Methods Salt-tolerant rice X1, X2, and X3 as well as salt-sensitive X20 and X30 were treated by a high salt condition of 1/2KB solution with 200 mmol·L−1 NaCl. The physiological metabolism and expression of functional genes of the two contrasting groups of rice were compared. Results Under the stress, the proline and soluble sugar contents, superoxide dismutase and catalase activities, and expressions of OsP5CS1, OsProt, OsCu/Zn-SOD, OsAPX2, OsNCED3, and OsNCED5 of the salt-tolerant rice were significantly higher, whereas the malondialdehyde and hydrogen peroxide contents significantly lower, than those of the salt-sensitive counterparts. Conclusion The salt-tolerant rice lines resisted the high salt exposure mainly by increasing osmotic regulation, activating oxygen scavenging, and accentuating functional gene expression of the plants. -
图 1 正常生长条件及高盐胁迫条件下耐盐性品系和盐敏感型植株之间脯氨酸(A)和可溶性糖(B)含量比较
图中不同小写字母表示不同材料间差异显著(P<0.05)。下图同。
Figure 1. Proline (A) and sugar (B) in salt-tolerant and salt-sensitive rice plants under salt-stress or normal conditions
Data with different lowercase letters represent significant difference at P<0.05 among different rice lines. The same for the following.
表 1 实时定量PCR分析所用引物
Table 1. Primers used in qRT-PCR analyses
名称 Name 引物序列 Primers sequence OsActin F:5'-AGCTATCGTCCACAGGAA -3' R:5'-ACCGGAGCTAATCAGAGT -3' OsP5CS1 F: 5'-TCTGCTCAGTGATGTGGATG -3' R:5'-CCTACACGAGATTTGTCTCC -3' OsProt F:5'-TCGTTCTGACAACTGGGGTGA-3' R:5'-TGTCGTTTGCCTCCGATTTC-3' OsAPX2 F:5'- AACTTCCCATCCTCTCCTAC -3' R:5'- CTCTCCTTGTGGCATCTTCC -3' OsCu/Zn-SOD F:5'-TATCATCGTCAGGTCAGGCA -3' R:5'- ACACTTCAGCTGCAACTTGC -3' OsNCED3 F:5'- CTCACATACAGCGGCAGCAC -3' R:5'- CGCTCGAGGACATTCGCCAC -3' OsNCED5 F:5'- CCCAGCTTGAAGCTTTTGCT -3' R:5'- ACAACACTGCAACTATCCCTATCACT-3' -
[1] 王才林, 张亚东, 赵凌, 等. 耐盐碱水稻研究现状、问题与建议 [J]. 中国稻米, 2019, 25(1):1−6. doi: 10.3969/j.issn.1006-8082.2019.01.001WANG C L, ZHANG Y D, ZHAO L, et al. Research status, problems and suggestions on salt-alkali tolerant rice [J]. China Rice, 2019, 25(1): 1−6.(in Chinese) doi: 10.3969/j.issn.1006-8082.2019.01.001 [2] 颜佳倩, 顾逸彪, 薛张逸, 等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制 [J]. 作物学报, 2022, 48(6):1463−1475. doi: 10.3724/SP.J.1006.2022.12027YAN J Q, GU Y B, XUE Z Y, et al. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463−1475.(in Chinese) doi: 10.3724/SP.J.1006.2022.12027 [3] RAZZAQ A, ALI A, SAFDAR L B, et al. Salt stress induces physiochemical alterations in rice grain composition and quality [J]. Journal of Food Science, 2020, 85(1): 14−20. doi: 10.1111/1750-3841.14983 [4] VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71(6): 403−433. [5] LIU C T, MAO B G, YUAN D Y, et al. Salt tolerance in rice: Physiological responses and molecular mechanisms [J]. The Crop Journal, 2022, 10(1): 13−25. doi: 10.1016/j.cj.2021.02.010 [6] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant, Cell & Environment, 2010, 33(4): 453−467. [7] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12): 909−930. doi: 10.1016/j.plaphy.2010.08.016 [8] YOU J, CHAN Z L. ROS regulation during abiotic stress responses in crop plants [J]. Frontiers in Plant Science, 2015, 6: 1092. [9] SRIPINYOWANICH S, KLOMSAKUL P, BOONBURAPONG B, et al. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress [J]. Environmental and Experimental Botany, 2013, 86: 94−105. doi: 10.1016/j.envexpbot.2010.01.009 [10] ZHANG Z G, ZHANG Q, WU J X, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses [J]. PLoS One, 2013, 8(2): e57472. doi: 10.1371/journal.pone.0057472 [11] GUAN Q J, LIAO X, HE M L, et al. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress [J]. PLoS One, 2017, 12(10): e0186052. doi: 10.1371/journal.pone.0186052 [12] HUANG Y, GUO Y M, LIU Y T, et al. 9- cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice [J]. Frontiers in Plant Science, 2018, 9: 162. doi: 10.3389/fpls.2018.00162 [13] HUANG Y, JIAO Y, XIE N K, et al. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice [J]. Plant Science, 2019, 287: 110188. doi: 10.1016/j.plantsci.2019.110188 [14] SONG S Y, CHEN Y, CHEN J, et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress [J]. Planta, 2011, 234(2): 331−345. doi: 10.1007/s00425-011-1403-2 [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [16] 徐孟亮, 陈荣军, ROCHA Pedro, 等. 一个新的水稻逆境响应基因OsMsr1的表达与克隆 [J]. 作物学报, 2008, 34(10):1712−1718. doi: 10.3321/j.issn:0496-3490.2008.10.005XU M L, CHEN R J, PEDRO R, et al. Expression and cloning of a novel stress responsive gene (OsMsr1) in rice [J]. Acta Agronomica Sinica, 2008, 34(10): 1712−1718.(in Chinese) doi: 10.3321/j.issn:0496-3490.2008.10.005 [17] YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. The New Phytologist, 2018, 217(2): 523−539. doi: 10.1111/nph.14920 [18] GANIE S A, MOLLA K A, HENRY R J, et al. Advances in understanding salt tolerance in rice [J]. Theoretical and Applied Genetics, 2019, 132(4): 851−870. doi: 10.1007/s00122-019-03301-8 [19] ZHOU W, LI Y, ZHAO B C, et al. Overexpression of TaSTRG gene improves salt and drought tolerance in rice [J]. Journal of Plant Physiology, 2009, 166(15): 1660−1671. doi: 10.1016/j.jplph.2009.04.015 [20] FOYER C H, SHIGEOKA S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology, 2010, 155(1): 93−100.