• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同耐盐性水稻材料对盐胁迫的生理响应及分子机制

徐淑英

徐淑英. 不同耐盐性水稻材料对盐胁迫的生理响应及分子机制 [J]. 福建农业学报,2022,37(9):1225−1229 doi: 10.19303/j.issn.1008-0384.2022.009.015
引用本文: 徐淑英. 不同耐盐性水稻材料对盐胁迫的生理响应及分子机制 [J]. 福建农业学报,2022,37(9):1225−1229 doi: 10.19303/j.issn.1008-0384.2022.009.015
XU S Y. Physiological Response and Molecular Mechanism of Rice to Salt-stress [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1225−1229 doi: 10.19303/j.issn.1008-0384.2022.009.015
Citation: XU S Y. Physiological Response and Molecular Mechanism of Rice to Salt-stress [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1225−1229 doi: 10.19303/j.issn.1008-0384.2022.009.015

不同耐盐性水稻材料对盐胁迫的生理响应及分子机制

doi: 10.19303/j.issn.1008-0384.2022.009.015
基金项目: 福建省科技计划星火项目(2018S0025)
详细信息
    作者简介:

    徐淑英(1964−),女,高级农艺师,主要从事水稻遗传育种与良种推广(E-mail:lyghlanwu@126.com

  • 中图分类号: S 511

Physiological Response and Molecular Mechanism of Rice to Salt-stress

  • 摘要:   目的  研究不同耐盐性水稻材料应答高盐胁迫的生理及分子机理,对筛选和培育耐盐水稻新品种具有重要的参考价值。  方法  分别以耐盐水稻品系X1、X2、X3和盐敏感水稻品系X20、X30为试验材料,分析其在高盐胁迫(200 mmol·L−1 NaCl的1/2KB溶液)条件下的生理代谢及耐盐相关功能基因表达差异。  结果  在高盐胁迫条件下,耐盐水稻材料体内脯氨酸及可溶性糖含量、超氧化物歧化酶及过氧化氢酶的活性,以及耐盐相关功能基因OsP5CS1OsProtOsCu/Zn-SODOsAPX2OsNCED3OsNCED5的表达水平明显高于盐敏感型,而丙二醛和过氧化氢含量明显低于盐敏感型。  结论  耐盐性水稻材料主要通过提高渗透调节能力、活性氧清除能力及耐盐相关功能基因的表达来提高其耐盐性。
  • 图  1  正常生长条件及高盐胁迫条件下耐盐性品系和盐敏感型植株之间脯氨酸(A)和可溶性糖(B)含量比较

    图中不同小写字母表示不同材料间差异显著(P<0.05)。下图同。

    Figure  1.  Proline (A) and sugar (B) in salt-tolerant and salt-sensitive rice plants under salt-stress or normal conditions

    Data with different lowercase letters represent significant difference at P<0.05 among different rice lines. The same for the following.

    图  2  正常生长条件及高盐胁迫处理条件下耐盐品系与盐敏感型品系之间H2O2 (A)和MDA (B)含量比较

    Figure  2.  H2O2 (A) and MDA (B) in salt-tolerant and salt-sensitive rice plants under salt-stress or normal conditions

    图  3  正常生长条件及高盐胁迫条件下耐盐品系与盐敏感型植株之间CAT (A)和SOD(B)活性比较

    Figure  3.  CAT (A) and SOD (B) activities of salt-tolerant and salt-sensitive rice plants under salt-stress or normal conditions

    图  4  正常生长条件及高盐胁迫条件下耐盐相关基因在耐盐与盐敏感型植株之间的表达比较

    Figure  4.  Expressions of salt-stress-related genes of salt-tolerant and salt-sensitive rice plants under salt-stress or normal conditions

    表  1  实时定量PCR分析所用引物

    Table  1.   Primers used in qRT-PCR analyses

    名称 Name引物序列 Primers sequence
    OsActin F:5'-AGCTATCGTCCACAGGAA -3'
    R:5'-ACCGGAGCTAATCAGAGT -3'
    OsP5CS1 F: 5'-TCTGCTCAGTGATGTGGATG -3'
    R:5'-CCTACACGAGATTTGTCTCC -3'
    OsProt F:5'-TCGTTCTGACAACTGGGGTGA-3'
    R:5'-TGTCGTTTGCCTCCGATTTC-3'
    OsAPX2 F:5'- AACTTCCCATCCTCTCCTAC -3'
    R:5'- CTCTCCTTGTGGCATCTTCC -3'
    OsCu/Zn-SOD F:5'-TATCATCGTCAGGTCAGGCA -3'
    R:5'- ACACTTCAGCTGCAACTTGC -3'
    OsNCED3 F:5'- CTCACATACAGCGGCAGCAC -3'
    R:5'- CGCTCGAGGACATTCGCCAC -3'
    OsNCED5 F:5'- CCCAGCTTGAAGCTTTTGCT -3'
    R:5'- ACAACACTGCAACTATCCCTATCACT-3'
    下载: 导出CSV
  • [1] 王才林, 张亚东, 赵凌, 等. 耐盐碱水稻研究现状、问题与建议 [J]. 中国稻米, 2019, 25(1):1−6. doi: 10.3969/j.issn.1006-8082.2019.01.001

    WANG C L, ZHANG Y D, ZHAO L, et al. Research status, problems and suggestions on salt-alkali tolerant rice [J]. China Rice, 2019, 25(1): 1−6.(in Chinese) doi: 10.3969/j.issn.1006-8082.2019.01.001
    [2] 颜佳倩, 顾逸彪, 薛张逸, 等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制 [J]. 作物学报, 2022, 48(6):1463−1475. doi: 10.3724/SP.J.1006.2022.12027

    YAN J Q, GU Y B, XUE Z Y, et al. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463−1475.(in Chinese) doi: 10.3724/SP.J.1006.2022.12027
    [3] RAZZAQ A, ALI A, SAFDAR L B, et al. Salt stress induces physiochemical alterations in rice grain composition and quality [J]. Journal of Food Science, 2020, 85(1): 14−20. doi: 10.1111/1750-3841.14983
    [4] VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71(6): 403−433.
    [5] LIU C T, MAO B G, YUAN D Y, et al. Salt tolerance in rice: Physiological responses and molecular mechanisms [J]. The Crop Journal, 2022, 10(1): 13−25. doi: 10.1016/j.cj.2021.02.010
    [6] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant, Cell & Environment, 2010, 33(4): 453−467.
    [7] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12): 909−930. doi: 10.1016/j.plaphy.2010.08.016
    [8] YOU J, CHAN Z L. ROS regulation during abiotic stress responses in crop plants [J]. Frontiers in Plant Science, 2015, 6: 1092.
    [9] SRIPINYOWANICH S, KLOMSAKUL P, BOONBURAPONG B, et al. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress [J]. Environmental and Experimental Botany, 2013, 86: 94−105. doi: 10.1016/j.envexpbot.2010.01.009
    [10] ZHANG Z G, ZHANG Q, WU J X, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses [J]. PLoS One, 2013, 8(2): e57472. doi: 10.1371/journal.pone.0057472
    [11] GUAN Q J, LIAO X, HE M L, et al. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress [J]. PLoS One, 2017, 12(10): e0186052. doi: 10.1371/journal.pone.0186052
    [12] HUANG Y, GUO Y M, LIU Y T, et al. 9- cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice [J]. Frontiers in Plant Science, 2018, 9: 162. doi: 10.3389/fpls.2018.00162
    [13] HUANG Y, JIAO Y, XIE N K, et al. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice [J]. Plant Science, 2019, 287: 110188. doi: 10.1016/j.plantsci.2019.110188
    [14] SONG S Y, CHEN Y, CHEN J, et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress [J]. Planta, 2011, 234(2): 331−345. doi: 10.1007/s00425-011-1403-2
    [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [16] 徐孟亮, 陈荣军, ROCHA Pedro, 等. 一个新的水稻逆境响应基因OsMsr1的表达与克隆 [J]. 作物学报, 2008, 34(10):1712−1718. doi: 10.3321/j.issn:0496-3490.2008.10.005

    XU M L, CHEN R J, PEDRO R, et al. Expression and cloning of a novel stress responsive gene (OsMsr1) in rice [J]. Acta Agronomica Sinica, 2008, 34(10): 1712−1718.(in Chinese) doi: 10.3321/j.issn:0496-3490.2008.10.005
    [17] YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. The New Phytologist, 2018, 217(2): 523−539. doi: 10.1111/nph.14920
    [18] GANIE S A, MOLLA K A, HENRY R J, et al. Advances in understanding salt tolerance in rice [J]. Theoretical and Applied Genetics, 2019, 132(4): 851−870. doi: 10.1007/s00122-019-03301-8
    [19] ZHOU W, LI Y, ZHAO B C, et al. Overexpression of TaSTRG gene improves salt and drought tolerance in rice [J]. Journal of Plant Physiology, 2009, 166(15): 1660−1671. doi: 10.1016/j.jplph.2009.04.015
    [20] FOYER C H, SHIGEOKA S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology, 2010, 155(1): 93−100.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1107
  • HTML全文浏览量:  465
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 录用日期:  2022-09-19
  • 修回日期:  2022-07-31
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回