Rhizosphere Microbial Community as Affected by Sweet Potato Stem Rot Disease
-
摘要:
目的 探明甘薯茎基部腐烂病发生机制,为构建该病害的绿色防控体系提供依据。 方法 以处于南北薯区交接带、南北甘薯病害发生区的浙江省台州市黄岩区西部山区为研究对象,采用Illumina高通量测序技术,对比研究甘薯茎基部腐烂病发病甘薯植株与健康甘薯植株的根际土壤细菌群落结构和多样性,及其根际土壤酶包括土壤脲酶、蔗糖酶和碱性磷酸酶活性。 结果 甘薯茎基部腐烂病显著降低了植株根际土壤脲酶、蔗糖酶和碱性磷酸酶活性,提高了根际土壤细菌多样性指数。在门分类水平上,该病害显著降低了其植株根际土壤放线菌门、疣微菌门和拟杆菌门相对丰度,显著提高了绿湾菌门和Candidate-division-wps-2菌群的相对丰度。在属分类水平上,该病害显著提高了植株根际土壤细菌GP1、未分类的厚壁菌属和芽单胞菌属的相对丰度,显著降低了未分类的链霉菌属、链嗜酸菌属、伯克霍尔德菌属等菌群的相对丰度。 结论 甘薯茎基部腐烂病降低了其植株根际脲酶、蔗糖酶和碱性磷酸酶活性,改变了甘薯根际土壤细菌群落的结构和多样性。 -
关键词:
- 甘薯茎基部腐烂病 /
- 高通量测序 /
- 根际土壤细菌群落结构 /
- 土壤酶活性
Abstract:Objective Microbial communities in rhizosphere soils of healthy sweet potato plants and those infected by the stem rot disease (SPSR) were compared for ecological disease control. Method Rhizosphere soil samples at fields of healthy and SPSR-infected sweet potatoes in between north and south planting regions and disease occurring western hilly areas of Huangyan, Taizhou City, Zhejiang Province, were collected. Enzyme activity and microbial community in the soil were analyzed using the traditional and high throughput sequencing techniques. Results Compared with the rhizosphere soils of non-infected plants, those associated with the SPSR-infected sweet potatoes exhibited significant inhibition on the activities of urease, invertase, and alkaline phosphatase as well as significant increases on the microbial diversity and richness such as Chao1 and Shannon indices. At phylum level, the average relative abundance of dominant microbes, such as Actinobacteria, Verrucomicroba, and Bacteroidetes, were significantly lower in the SPSR soil, but that of Chloroflexi and Candidate-division-wps-2 significantly higher. At genus level, the average relative abundance of GP1, Firmicutes-unclassified, and Gemmatimonas was higher in the SPSR samples, while that of Streptomycetaceae-unclassified, Streptacidiphilus, and Burkhoideria lower. Conclusion In the rhizosphere soils of SPSR-infected sweet potato plants, the activities of some important soil enzymes were low. At both phylum and genus levels, the great variations in the abundance of dominant microorganisms existed between the healthy and SPSR rhizosphere soils. -
表 1 甘薯茎基部腐烂病发病植株与健康植株根际土壤酶活性比较
Table 1. Enzyme activities in rhizosphere soils of healthy and SPSR-infected sweet potato fields
根际土壤
Rhizosphere
soils脲酶活性
Urease activity/
(mg·g−1·d−1)蔗糖酶活性
Invertase activity/
(mg·g−1·d−1)碱性磷酸酶活性
Alkaline phosephatase/
(µg·g−1·d−1)发病植株
Infected0.26±0.02 b 9.56±0.31 b 7.12±0.24 b 健康植株
Non-infected0.48±0.06 a 24.17±0.19 a 12.89±0.63 a 同列数值后不同小写字母表示处理间差异在5%水平上显著。
Values followed by different small letters in the column are significantly different at 5% level.表 2 发病与健康甘薯植株根际土壤细菌Alpha多样性
Table 2. Alpha diversity of microbial communities in rhizosphere soils of healthy and SPSR-infected sweet potato fields
根际土壤样品
Rhizosphere soils物种数
Observed speciesChao1指数
Chao1 index辛普森指数
Simpson index香农指数
Shannon index覆盖度
Coverage/%发病植株 Infected 6 493.00 a 6906.24±11.02 a 0.98±0.01 a 10.78±0.03 a 98.35 健康植株 Non-infected 6 072.00 b 6625.01±13.11 b 0.97±0.03 a 10.50±0.05 a 98.61 同列不同小写字母表示差异显著(P<0.05)。
Data with different lowercase letters on same column indicate significant difference at P<0.05. -
[1] 谢逸萍, 孙厚俊, 邢继英. 中国各大薯区甘薯病虫害分布及危害程度研究 [J]. 江西农业学报, 2009, 21(8):121−122. doi: 10.3969/j.issn.1001-8581.2009.08.042XIE Y P, SUN H J, XING J Y. Distribution and damage degree of diseases and insect pests of sweet potato in China [J]. Acta Agriculturae Jiangxi, 2009, 21(8): 121−122.(in Chinese) doi: 10.3969/j.issn.1001-8581.2009.08.042 [2] 余继华. 一种重要的甘薯新病害: 甘薯基腐病 [J]. 植物检疫, 2018, 32(6):51−54.YU J H. Sweet potato foot rot, a new important disease of sweet potato [J]. Plant Quarantine, 2018, 32(6): 51−54.(in Chinese) [3] 黄巧雯, 杨宏仁, 林静宜, 等. 甘薯基腐病菌(Phomopsis destruens)生理特性及防治技术研究 [J]. 台湾农业研究, 2016, 25(1):45−53.HUANG Q W, YANG H R, LIN J Y, et al. Study on physiological characteristics and control technology of Phomopsis destruens [J]. Agricultural Research in Taiwan, 2016, 25(1): 45−53.(in Chinese) [4] 黄巧雯, 庄明富, 曾显雄, 等. 由Phomopsis destruens引起之甘薯基腐病 [J]. 台湾植物病理学会刊, 2012, 21(1):47−52.HUANG Q W, ZHUANG M F, ZENG X X, et al. Sweet potato base rot caused by Phomopsis destruens [J]. Journal of Taiwan Society of Plant Pathology, 2012, 21(1): 47−52.(in Chinese) [5] 钱恒伟, 徐鹏程, 迟梦宇, 等. 尖孢镰刀菌与极细链格孢复合侵染引起甘薯茎枯病 [J]. 植物保护学报, 2017(5):867−868. doi: 10.13802/j.cnki.zwbhxb.2017.2016048QIAN H W, XU P C, CHI M Y, et al. Mixed infection by Fusarium oxysporum and Alternaria tenuissima on sweet potato Fusarium wilt [J]. Journal of Plant Protection, 2017(5): 867−868.(in Chinese) doi: 10.13802/j.cnki.zwbhxb.2017.2016048 [6] 陈利锋, 徐雍皋, 方中达. 甘薯根腐病病原菌的鉴定及甘薯品种(系)抗病性的测定 [J]. 江苏农业学报, 1990(2):27−32.CHEN L F, XU Y G, FANG Z D. Identification of isolates causing root rot of sweet potato and tests on resistance of varieties of sweet potato to root rot [J]. Jiangsu Journal of Agricultural Sciences, 1990(2): 27−32.(in Chinese) [7] 谢一芝, 张黎玉, 戴起伟, 等. 甘薯根腐病抗性在不同环境条件下的表现及遗传趋势 [J]. 植物保护学报, 2002, 29(2):133−137. doi: 10.3321/j.issn:0577-7518.2002.02.009XIE Y Z, ZHANG L Y, DAI Q W, et al. Behaviors of sweetpotato resistance to root rot in the different environmental conditions and its inheritance [J]. Journal of Plant Protection, 2002, 29(2): 133−137.(in Chinese) doi: 10.3321/j.issn:0577-7518.2002.02.009 [8] 刘奕君, 吴明琼, 廖咏梅. 广西3种甘薯薯块真菌性病害的病原鉴定 [J]. 广西植保, 2017(3):5−9. doi: 10.3969/j.issn.1003-8779.2017.03.002LIU Y J, WU M Q, LIAO Y M. Identification of three pathogenic funguses on Dioscorea esculenta in Guangxi [J]. Guangxi Plant Protection, 2017(3): 5−9.(in Chinese) doi: 10.3969/j.issn.1003-8779.2017.03.002 [9] 游春平, 陈炳旭. 我国甘薯病害种类及防治对策 [J]. 广东农业科学, 2010, 37(8):115−119. doi: 10.3969/j.issn.1004-874X.2010.08.048YOU C P, CHEN B X. Occurrence and management of main peanut diseases in China [J]. Guangdong Agricultural Sciences, 2010, 37(8): 115−119.(in Chinese) doi: 10.3969/j.issn.1004-874X.2010.08.048 [10] 林飞荣, 陶永刚, 张敏荣, 等. 甘薯茎基部腐烂病病原及药剂防治研究初报 [J]. 农业科技通讯, 2019(9):168−172. doi: 10.3969/j.issn.1000-6400.2019.09.061LIN F R, TAO Y G, ZHANG M R, et al. A preliminary report on the pathogen of sweet potato stem base rotand its chemical control [J]. Bulletin of Agricultural Science and Technology, 2019(9): 168−172.(in Chinese) doi: 10.3969/j.issn.1000-6400.2019.09.061 [11] SCHAAD N W, BRENNER D. A bacterial wile and root rot sweet potato caused by Erwinia Chrysanthemi [J]. Phytopathology, 1977, 67: 302−308. [12] 余继华, 林飞荣, 石建尧, 等. 甘薯2种新入侵有害生物的防控研究 [J]. 农学学报, 2019, 9(2):18−23. doi: 10.11923/j.issn.2095-4050.cjas18060015YU J H, LIN F R, SHI J Y, et al. Prevention and control of two newly-invasive diseases of sweet potato [J]. Journal of Agriculture, 2019, 9(2): 18−23.(in Chinese) doi: 10.11923/j.issn.2095-4050.cjas18060015 [13] 沈肖玲, 林钗, 钱俊婷, 等. 甘薯茎腐病症状及其病原鉴定 [J]. 植物病理学报, 2018, 48(1):25−34. doi: 10.13926/j.cnki.apps.000077SHEN X L, LIN C, QIAN J T, et al. Characterization of stem and root rot symptoms of sweet potato and the causal pathogen of the disease [J]. Acta Phytopathologica Sinica, 2018, 48(1): 25−34.(in Chinese) doi: 10.13926/j.cnki.apps.000077 [14] 黄立飞, 刘伟明, 刘也楠, 等. 甘薯茎基部腐烂病调查及病原鉴定 [J]. 中国农学通报, 2019, 35(18):135−141. doi: 10.11924/j.issn.1000-6850.casb19030138HUANG L F, LIU W M, LIU Y N, et al. Investigation of stem base rot of sweetpotato and the pathogeny identification [J]. Chinese Agricultural Science Bulletin, 2019, 35(18): 135−141.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb19030138 [15] 曹毅, 陆宁, 陈兴江, 等. 烟草青枯病病圃土壤细菌组成的高通量测序分析 [J]. 河南农业科学, 2017, 46(3):81−85. doi: 10.15933/j.cnki.1004-3268.2017.03.016CAO Y, LU N, CHEN X J, et al. Pyrosequencing analysis of soil bacteria composition in tobacco bacterial wilt disease nursery [J]. Journal of Henan Agricultural Sciences, 2017, 46(3): 81−85.(in Chinese) doi: 10.15933/j.cnki.1004-3268.2017.03.016 [16] WU Z, HAO Z, CHEN X J, et al. Comparison on the structure and function of the rhizosphere microbialcommunity between healthy and root-rot Panax notogin-seng [J]. Applied Soil Ecology, 2016, 107: 99−107. doi: 10.1016/j.apsoil.2016.05.017 [17] NIU J, CHAO J, XIAO Y, et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate [J]. Journal of Basic Microbiology, 2017, 57(1): 3−11. doi: 10.1002/jobm.201600222 [18] YANG Y, WU L, LIN Q, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland [J]. Global Change Biology, 2013, 19(2): 637−648. [19] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911−E920. [20] 杨光柱, 黄文静, 李云国, 等. 苹果根腐病根际土壤真菌组成及多样性研究 [J]. 果树学报, 2020, 37(6):875−881. doi: 10.13925/j.cnki.gsxb.20190242YANG G Z, HUANG W J, LI Y G, et al. Fungal community and diversity in rhizospheric soil with root rot in an apple orchard [J]. Journal of Fruit Science, 2020, 37(6): 875−881.(in Chinese) doi: 10.13925/j.cnki.gsxb.20190242 [21] 蒋景龙, 余妙, 李丽, 等. 西洋参根腐病发生与根际土壤细菌群落结构变化关系研究 [J]. 中草药, 2018, 49(18):4399−4407. doi: 10.7501/j.issn.0253-2670.2018.18.027JIANG J L, YU M, LI L, et al. Relationship between occurrence of root-rot and changes of bacterial community structure in rhizosphere soil of Panax quinquefolius [J]. Acupuncture Research, 2018, 49(18): 4399−4407.(in Chinese) doi: 10.7501/j.issn.0253-2670.2018.18.027 [22] 杨尚东, 郭霜, 任奎喻, 等. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征 [J]. 植物营养与肥料学报, 2019(6):910−916. doi: 10.11674/zwyf.18484YANG S D, GUO S, REN K Y, et al. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease [J]. Journal of Plant Nutrition and Fertilizers, 2019(6): 910−916.(in Chinese) doi: 10.11674/zwyf.18484 [23] 伍文宪, 黄小琴, 张蕾, 等. 十字花科作物根肿病对根际土壤微生物群落的影响 [J]. 生态学报, 2020, 40(5):1532−1541.WU W X, HUANG X Q, ZHANG L, et al. Crucifer clubroot disease changes the microbial community structure of rhizosphere soil [J]. Acta Ecologica Sinica, 2020, 40(5): 1532−1541.(in Chinese) [24] 施河丽, 向必坤, 谭军, 等. 烟草青枯病发病烟株根际土壤细菌群落分析 [J]. 中国烟草学报, 2018, 24(5):57−65. doi: 10.16472/j.chinatobacco.2018.031SHI H L, XIANG B K, TAN J, et al. Analysis of bacterial community in rhizosphere soil of tobacco plant infected by bacterial wilt disease [J]. Acta Tabacaria Sinica, 2018, 24(5): 57−65.(in Chinese) doi: 10.16472/j.chinatobacco.2018.031 [25] 赵兰坡, 姜岩. 土壤磷酸酶活性测定方法的探讨 [J]. 土壤通报, 1986, 5(3):138−141. doi: 10.19336/j.cnki.trtb.1986.03.013ZHAO L P, JIANG Y. Discussion on the determination method of soil phosphatase activity [J]. Chinese Journal of Soil Science, 1986, 5(3): 138−141.(in Chinese) doi: 10.19336/j.cnki.trtb.1986.03.013 [26] CAPORASO J G, LAUBER C L, WALTERS W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J]. The ISME Journal, 2012, 6(8): 1621−1624. doi: 10.1038/ismej.2012.8 [27] 向立刚, 周浩, 汪汉成, 等. 健康与感染青枯病烟株根际土壤与茎秆细菌群落结构与多样性 [J]. 微生物学报, 2019, 59(10):1984−1999. doi: 10.13343/j.cnki.wsxb.20180524XIANG L G, ZHOU H, WANG H C, et al. Bacterial community structure and diversity of rhizosphere soil and stem of healthy and bacterial wilt tobacco plants [J]. Acta Microbiologica Sinica, 2019, 59(10): 1984−1999.(in Chinese) doi: 10.13343/j.cnki.wsxb.20180524 [28] 李雪萍. 青藏高原青稞根腐类病害及其对根际土壤微生态的影响[D]. 兰州: 甘肃农业大学, 2017.LI X P. Root rot diseases of highland barley and their effects on Rhizosphere Soil Microecology in Qinghai[D]. LanZhou: Gansu Agricultural University, 2017. (in Chinese) [29] BHATTI A A, HAQ S, BHAT R A. Actinomycetes benefaction role in soil and plant health [J]. Microb Pathog, 2017, 111: 458−467. doi: 10.1016/j.micpath.2017.09.036 [30] 赵娟, 贾卫国, 刘伟成, 等. 草莓灰霉病菌拮抗放线菌的筛选及活性测定 [J]. 北方园艺, 2018(4):59−65. doi: 10.11937/bfyy.20172767ZHAO J, JIA W G, LIU W C, et al. Screening of antagonistic actinomycete against strawberry grey mould and activity determination of its fermentation broth [J]. Northern Horticulture, 2018(4): 59−65.(in Chinese) doi: 10.11937/bfyy.20172767 [31] 张薇. 烟草青枯菌拮抗放线菌的筛选、鉴定及发酵条件研究[D]. 泰安: 山东农业大学, 2009.ZHANG W. Screening, identification and fermentation conditions of Antagonistic Actinomycetes against tobacco bacterial wilt[D]. Tai’an: Shandong Agricultural University, 2009. (in Chinese) [32] 林睿. 土壤链霉菌拮抗致病疫霉及其对植物促生特性的研究[D]. 呼和浩特: 内蒙古农业大学, 2019.LIN R. Studies on antagonistic effect of Streptomyces pedosus against Phytophthora infestans and its growth promoting properties on plants[D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese) [33] 杨万勤, 王开运. 森林土壤酶的研究进展 [J]. 林业科学, 2004, 40(2):152−159. doi: 10.3321/j.issn:1001-7488.2004.02.027YANG W Q, WANG K Y. Advances in forest soil enzymology [J]. Scientia Silvae Sinicae, 2004, 40(2): 152−159.(in Chinese) doi: 10.3321/j.issn:1001-7488.2004.02.027 [34] 高文慧, 郭宗昊, 薛晨, 等. 生物炭及炭基肥对大豆土壤酶活性的影响 [J]. 淮北师范大学学报(自然科学版), 2020, 41(1):48−53.GAO W H, GUO Z H, XUE C, et al. Effect of biochar and biochar compound fertilizer on soil enzyme activity of soybean [J]. Journal of Huaibei Normal University (Natural Science), 2020, 41(1): 48−53.(in Chinese) [35] 游春梅, 陆晓菊, 官会林. 三七设施栽培根腐病害与土壤酶活性的关联性 [J]. 云南师范大学学报(自然科学版), 2014, 34(6):25−29.YOU C M, LU X J, GUAN H L. The relevance of notoginseng root rot to the enzyme activity in soil [J]. Journal of Yunan Normal University (Natural Sciences Edition), 2014, 34(6): 25−29.(in Chinese) [36] 李雪萍, 李建宏, 漆永红, 等. 青稞根腐病对根际土壤微生物及酶活性的影响 [J]. 生态学报, 2017, 37(17):5640−5649.LI X P, LI J H, QI Y H, et al. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity [J]. Acta Ecologica Sinica, 2017, 37(17): 5640−5649.(in Chinese) [37] 史普酉, 杨成翠, 贾孟, 等. 不同黑胫病发病程度下植烟根际土壤酶活性及细菌群落结构差异比较 [J]. 中国土壤与肥料, 2020(1):179−187. doi: 10.11838/sfsc.1673-6257.19080SHI P Y, YANG C C, JIA M, et al. Comparison of soil enzyme activity and bacterial community structure in tobacco-growing rhizosphere under different incidence of black Tibia disease [J]. Soils and Fertilizers Sciences in China, 2020(1): 179−187.(in Chinese) doi: 10.11838/sfsc.1673-6257.19080