Construction of Yeast cDNA Library Using Vitis amurensis Leaves Under Low-temperature Stress
-
摘要:
目的 葡萄栽培过程中,由低温造成的冷害或冻害严重影响葡萄的生长发育、果实品质和产量。山葡萄是葡萄抗寒育种的重要种质资源,本文通过构建低温胁迫下山葡萄叶片酵母cDNA文库,为葡萄抗寒分子机理研究提供物质基础。 方法 以抗寒山葡萄左山-1(V. amuerensis cv.Zuoshan-1)扦插盆栽苗为材料,提取4 ℃低温处理0、2、4、8、12、24 h后叶片总RNA,采用SMART技术反转录为cDNA,经纯化和短片段去除后克隆至pGADT7三框质粒载体上,经过纯化后获得初级cDNA文库,对初级文库进行扩增、提取文库质粒后转入酵母Y187菌株中,制作扩增的酵母文库,并对文库质量进行鉴定。 结果 经检测所构建的3个读码框初级文库库容分别为1.7×106 、2.0×106 和1.9×106 cfu,重组率为100%,插入的片段长度主要分布在500~2000 bp;电泳检测和测序结果表明,插入片段所对应的编码蛋白类型丰富,具有良好的多态性。最终获得的Y187酵母文库滴度为4.0×108 cfu·mL−1。 结论 构建的低温胁迫下山葡萄叶片酵母cDNA文库质量较高,为筛选山葡萄低温胁迫下的互作蛋白提供了材料基础。 Abstract:Objective A yeast cDNA library was constructed using the leaves from a cold tolerant Amur grape plant under low-temperature stress to facilitate the study of the resistance mechanism. Method As a well-known frost resistant Vitis amurensis Rupr., V. amuerensis cv. Zuoshan-1 was cultured in a pot experiment for a total RNA extraction from the seedling leaves after 0, 2, 4, 8, 12, and 24 h at 4 °C. The extract was then reverse transcribed into cDNA using the SMART technology to be purified. Short fragments were removed and ligated into pGADT7 3-frame plasmid vector to establish a primary cDNA library. After amplification, plasmid was extracted and transformed into yeast Y187 for the library construction, followed by a qualitative verification. Result The capacities of the 3 reading frame primary libraries were tested to be 1.7×106 cfu, 2.0×106 cfu, and 1.9×106 cfu with a recombination rate of 100%. The lengths of the inserted fragments were largely in the 500-2 000 bp region. The electrophoretic detected and sequenced encoded proteins corresponding to the inserted fragments were abundant and highly polymorphic. The titer of the finally obtained Y187 yeast library was approximately 4.0×108 cfu·mL−1. Conclusion A high quality yeast cDNA library using Amur grape leaves under low temperature was successfully constructed for future studies on the interacting proteins under cold stress that could induce injury impairing the growth, development, fruit quality, and yield of grape vines. -
Key words:
- Vitis amurensis Rupr. /
- yeast cDNA library /
- low temperature /
- abiotic stress
-
表 1 文库中插入片段功能分析
Table 1. Functional characterization on inserted fragments from cDNA library
序号
Number候选蛋白
Candidate proteins蛋白登录号
Accession number1 剪接因子U2af
Splicing factor U2afXP_010649167.1 2 MOB激酶激活因子1A
MOB kinase activator-like 1AXP_003631858.1 3 KAKU4蛋白
Protein KAKU4XP_019075105.1 4 未知蛋白
Uncharacterized proteinXP_002265235.1 5 类韧皮部蛋白2
Phloem protein 2-likeXP_002277133.1 6 60S核糖体蛋白L10a-1
60S ribosomal protein L10a-1XP_002282641.1 7 psbP 结构域蛋白-6
psbP domain-containing protein 6XP_019076972.1 8 组氨酸磷酸转移蛋白1
Histidine-containing phosphotransfer protein 1XP_002278411.1 9 谷胱甘肽S-转移酶 DHAR3
Glutathione S-transferase DHAR3XP_002266106.1 10 腺苷酸激酶
Adenylate kinaseXP_003634590.1 11 E3类泛素蛋白UFM1连接酶1
E3 UFM1-protein ligase 1XP_002284524.1 12 nudix水解酶10
nudix hydrolase 10XP_003634765.1 13 分泌载体相关膜蛋白3
Secretory carrier-associated membrane protein 3XP_010646776.1 14 超敏诱导反应蛋白4
Hypersensitive-induced response protein 4XP_010662382.1 15 L-抗坏血酸过氧化酶3
L-ascorbate peroxidase 3XP_002278281.1 16 镁离子转运蛋白MRS2-F
Magnesium transporter MRS2-FXP_010652955.1 -
[1] 沈育杰, 赵淑兰, 杨义明, 等. 我国山葡萄种质资源研究与利用现状 [J]. 特产研究, 2006, 28(3):53−57. doi: 10.3969/j.issn.1001-4721.2006.03.020SHEN Y J, ZHAO S L, YANG Y M, et al. The research and utilization on Amur grape (V. amurensis rupr. ) germplasm resources in China [J]. Special Wild Economic Animal and Plant Research, 2006, 28(3): 53−57.(in Chinese) doi: 10.3969/j.issn.1001-4721.2006.03.020 [2] 亓桂梅, 赵艳侠, 昝林生, 等. 世界抗寒葡萄育种成果及应用概述 [J]. 东北农业科学, 2022, 47(1):108−111,141.QI G M, ZHAO Y X, ZAN L S, et al. Summary of breeding achievements and application of cold-resistant grape breeding in the world [J]. Journal of Northeast Agricultural Sciences, 2022, 47(1): 108−111,141.(in Chinese) [3] 袁军伟, 郭紫娟, 马爱红, 等. 葡萄砧木抗寒性的鉴定与综合评价 [J]. 中国农学通报, 2013, 29(4):99−103. doi: 10.3969/j.issn.1000-6850.2013.04.019YUAN J W, GUO Z J, MA A H, et al. Cold resistance identification and comprehensive evaluation of grape rootstocks [J]. Chinese Agricultural Science Bulletin, 2013, 29(4): 99−103.(in Chinese) doi: 10.3969/j.issn.1000-6850.2013.04.019 [4] 鲁金星, 姜寒玉, 李唯. 低温胁迫对砧木及酿酒葡萄枝条抗寒性的影响 [J]. 果树学报, 2012, 29(6):1040−1046. doi: 10.13925/j.cnki.gsxb.2012.06.020LU J X, JIANG H Y, LI W. Effects of low temperature stress on the cold resistance of rootstock and branch of wine grapes [J]. Journal of Fruit Science, 2012, 29(6): 1040−1046.(in Chinese) doi: 10.13925/j.cnki.gsxb.2012.06.020 [5] CHINNUSAMY V, ZHU J H, ZHU J K. Cold stress regulation of gene expression in plants [J]. Trends in Plant Science, 2007, 12(10): 444−451. doi: 10.1016/j.tplants.2007.07.002 [6] KARIMI M, EBADI A, MOUSAVI S A, et al. Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress [J]. Scientia Horticulturae, 2015, 197: 521−526. doi: 10.1016/j.scienta.2015.10.011 [7] TILLETT R L, WHEATLEY M D, TATTERSALL E A R, et al. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape [J]. Plant Biotechnology Journal, 2012, 10(1): 105−124. doi: 10.1111/j.1467-7652.2011.00648.x [8] SUN X M, ZHU Z F, ZHANG L L, et al. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis [J]. Scientia Horticulturae, 2019, 243: 320−326. doi: 10.1016/j.scienta.2018.08.055 [9] SUN X M, ZHAO T T, GAN S H, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ethylene response factor 057 [J]. Scientific Reports, 2016, 6: 24066. doi: 10.1038/srep24066 [10] SUN X M, ZHANG L L, WONG D C J, et al. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance [J]. The Plant Journal:for Cell and Molecular Biology, 2019, 99(5): 988−1002. [11] XU W R, JIAO Y T, LI R M, et al. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis [J]. PLoS One, 2014, 9(7): e102303. doi: 10.1371/journal.pone.0102303 [12] LI J T, WANG L N, ZHU W, et al. Characterization of two VvICE1 genes isolated from ‘Muscat Hamburg’ grapevine and their effect on the tolerance to abiotic stresses [J]. Scientia Horticulturae, 2014, 165: 266−273. doi: 10.1016/j.scienta.2013.11.002 [13] LI J T, WANG N, WANG L N, et al. Molecular cloning and characterization of the HOS1 gene from ‘Muscat hamburg’ grapevine [J]. Journal of the American Society for Horticultural Science, 2014, 139(1): 54−62. doi: 10.21273/JASHS.139.1.54 [14] 范高韬, 孙小明, 任小蝶, 等. 葡萄COR27基因的克隆与抗寒功能研究 [J]. 植物科学学报, 2015, 33(3):346−354. doi: 10.11913/PSJ.2095-0837.2015.30346FAN G T, SUN X M, REN X D, et al. Cloning and functional analysis of COR27 from Vitis vinifera [J]. Plant Science Journal, 2015, 33(3): 346−354.(in Chinese) doi: 10.11913/PSJ.2095-0837.2015.30346 [15] FIELDS S, SONG O K. A novel genetic system to detect protein–protein interactions [J]. Nature, 1989, 340(6230): 245−246. doi: 10.1038/340245a0 [16] YAO W K, WANG L, WANG J, et al. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance [J]. Journal of Experimental Botany, 2017, 68(11): 2933−2949. doi: 10.1093/jxb/erx136 [17] 郑巧玲. 欧洲葡萄VvHOS1互作蛋白VvHIPP21响应逆境胁迫的功能分析[D]. 银川: 宁夏大学, 2021ZHENG Q L. Functional analysis of VvHOS1-interacting protein VvHIPP21 in stress resistance in Vitis vinifera[D]. Yinchuan: Ningxia University, 2021. (in Chinese) [18] 刘露露, 曲俊杰, 郭泽西, 等. 霜霉菌侵染后葡萄叶片酵母双杂交cDNA文库构建 [J]. 南方农业学报, 2020, 51(4):829−835.LIU L L, QU J J, GUO Z X, et al. Construction of a yeast two-hybrid cDNA library from Vitis vinifera leaves infected by downy mildew [J]. Journal of Southern Agriculture, 2020, 51(4): 829−835.(in Chinese) [19] 苏玲, 李彬, 王青, 等. 金柑花蕾酵母双杂交cDNA文库构建及评价 [J]. 基因组学与应用生物学, 2019, 38(7):3169−3173. doi: 10.13417/j.gab.038.003169SU L, LI B, WANG Q, et al. Construction and evaluation of yeast two hybrid cDNA library of floral buds from Rongan kumquat [J]. Genomics and Applied Biology, 2019, 38(7): 3169−3173.(in Chinese) doi: 10.13417/j.gab.038.003169