• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁皮石斛DcbHLH14基因克隆及表达分析

理雅 刘博婷 赖思慧 罗伟红 于白音 刘羽佳

理雅,刘博婷,赖思慧,等. 铁皮石斛DcbHLH14基因克隆及表达分析 [J]. 福建农业学报,2022,37(9):1145−1155 doi: 10.19303/j.issn.1008-0384.2022.009.005
引用本文: 理雅,刘博婷,赖思慧,等. 铁皮石斛DcbHLH14基因克隆及表达分析 [J]. 福建农业学报,2022,37(9):1145−1155 doi: 10.19303/j.issn.1008-0384.2022.009.005
LI Y, LIU B T, LAI S H, et al. Cloning and Expression of DcbHLH14 from Dendrobium catenatum Lindl. [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1145−1155 doi: 10.19303/j.issn.1008-0384.2022.009.005
Citation: LI Y, LIU B T, LAI S H, et al. Cloning and Expression of DcbHLH14 from Dendrobium catenatum Lindl. [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1145−1155 doi: 10.19303/j.issn.1008-0384.2022.009.005

铁皮石斛DcbHLH14基因克隆及表达分析

doi: 10.19303/j.issn.1008-0384.2022.009.005
基金项目: 国家自然科学基金项目(32000266);广东省基础与应用基础研究基金项目(2020A1515011438);广东省普通高校创新团队项目(2020KCXTD037);韶关市科技计划项目(200810224537583、210731084530203);韶关学院科研重点项目(SZ2019ZK04)
详细信息
    作者简介:

    理雅(1997−),女,硕士研究生,研究方向:铁皮石斛分子分析与基因改良(E-mail:1498391781@qq.com

    通讯作者:

    刘羽佳(1984−),女,博士,讲师,研究方向:植物逆境生理与分子生物学(E-mail:liuyj1713@dingtalk.com

  • 中图分类号: Q 78

Cloning and Expression of DcbHLH14 from Dendrobium catenatum Lindl.

  • 摘要:   目的  克隆铁皮石斛转录因子DcbHLH14基因并分析其在非生物胁迫响应中的表达情况,为研究DcbHLH14基因的功能提供理论参考。  方法  通过同源克隆从铁皮石斛叶组织中得到DcbHLH14基因,对其编码的蛋白序列特征和组织表达特性进行分析,并采用qRT-PCR对DcbHLH14基因在低温、干旱和ABA处理过程中的表达量进行分析。  结果  DcbHLH14基因开放阅读框(Open reading frame, ORF)为1269 bp,与参考序列存在7个碱基差异,仅含有1个外显子且无内含子,编码422个氨基酸。DcbHLH14蛋白的分子式为C2011H3192N586O613S13,理论分子量为45.8 kD,理论等电点(pI)为5.98,含有bHLH家族保守结构域bHLH-MYC-N和HLH,属于bHLH家族,与鼓槌石斛(Dendrobium chrysotoxum)和春兰(Cymbidium goeringii)bHLH蛋白的氨基酸序列同源性较高,分别为97.16%和86.90%。转录组分析结果显示,DcbHLH14基因在云南产地野生铁皮石斛花蕾中的表达量最高,在叶中的表达量最低。进一步qRT-PCR分析结果表明,该基因在广东丹霞铁皮石斛叶中的表达量最高,而在茎中的表达量最低。DcbHLH14基因启动子富含多种与水分胁迫、低温、脱水以及ABA响应等相关的顺式作用元件。DcbHLH14基因明显受到低温、干旱和ABA诱导,低温和ABA处理6 h后DcbHLH14表达量被显著提高并达到峰值,分别是处理前的12.6倍和3.7倍;干旱处理9 h后,DcbHLH14表达量最高,是处理前的6.5倍,达到极显著差异水平。  结论  DcbHLH14基因可能在转录水平上通过依赖于ABA信号通路途径响应低温和干旱胁迫,从而调控下游功能基因表达,提高铁皮石斛抗逆性。
  • 图  1  DcbHLH14基因克隆(A)及染色体定位(B)结果

    M:Marker;1:DcbHLH14基因 cDNA 电泳。

    Figure  1.  DcbHLH14 cloning (A) and chromosome locating (B)

    M: Marker; 1: cDNA electrophoresis of DcbHLH14.

    图  2  DcbHLH14基因cDNA序列及其推导氨基酸序列分析

    红色箭头表示DcbHLH14基因与参考序列间存在的碱基差异。

    Figure  2.  cDNA and deduced amino acid sequences of DcbHLH14

    Red arrow represents difference on base between DcbHLH14 and reference sequences.

    图  3  DcbHLH14 蛋白结构域预测

    Figure  3.  Domains of DcbHLH14 protein

    图  4  DcbHLH14蛋白亲疏水分析(A)、二级结构预测(B)及三级结构预测(C)

    Figure  4.  Hydrophilicity and hydrophobicity of DcbHLH14 protein (A), predicted secondary structure (B), and tertiary structure (C)

    图  5  DcbHLH14蛋白与其他物种bHLH蛋白的多重序列比对分析结果

    实线表示bHLH-MYC-N结构域;虚线表示HLH结构域。

    Figure  5.  Multiple sequence alignment between DcbHLH14 and bHLH proteins from other plants

    Solid line represents bHLH-MYC-N domain; dashed line, HLH domain.

    图  6  基于不同物种bHLH蛋白氨基酸序列构建的系统发育进化树

    Figure  6.  Phylogenetic tree based on amino acid sequences in bHLH protein of different species

    图  7  DcbHLH14基因在野生铁皮石斛不同组织中的表达

    小写字母表示不同组织间差异显著(P<0.05)。图8同。

    Figure  7.  Expressions of DcbHLH14 in tissues of wild D. catenatum   

    Letters represent significant difference between different organizations at P<0.05. Same for Fig. 8.

    图  8  DcbHLH14基因组织表达特性的qRT-PCR分析

    Figure  8.  qRT-PCR analysis on DcbHLH14 expressions in tissues

    图  9  DcbHLH14基因在低温(A)、干旱(B)和ABA(C)处理下的表达情况

    *表示与0 h差异显著(P<0.05);***表示与0 h极显著差异(P<0.001);

    Figure  9.  Expressions of DcbHLH14 under cold stress (A), drought stress (B), and ABA treatment (C)

    * represents significant difference from control (0 h) at P<0.05; *** represents extremely significant difference from control (0 h) at P<0.001.

    图  10  DcbHLH14基因在低温、干旱和ABA处理下表达水平的qRT-PCR分析结果

    不同小写字母表示同一处理不同时间之间差异显著(P<0.05)。

    Figure  10.  qRT-PCR analysis on expressions of DcbHLH14 under low temperature, drought, and ABA treatment

    Different lowercase letters indicant significant difference among different treatment times of the same treatment (P<0.05).

    表  1  DcbHLH14基因启动子顺式作用元件分析结果

    Table  1.   Cis-acting elements in DcbHLH14 promoter

    序号 No.元件名称 Element元件序列 Element sequence数目 Number功能预测 Predicted function
    1 MYCCONSENSUSAT CANNTG 18 低温响应 Low temperature responsive
    2 MYBCORE CNGTTR 4 水分胁迫调控 Regulation of water stress
    3 MYB2CONSENSUSAT YAACKG 3 脱水响应 Dehydration responsive
    4 LTRECOREATCOR15 CCGAC 3 低温响应 Low temperature responsive
    5 MYBATRD22 CTAACCA 2 脱水响应 Dehydration responsive
    6 MYB1AT WAACCA 1 脱水响应 Dehydration responsive
    7 ABRELATERD1 ACGTG 1 ABA响应 Abscisic acid responsive
    下载: 导出CSV
  • [1] 蔡琳, 彭鹏. 名贵中药铁皮石斛化学成分及其药理作用浅述 [J]. 安徽化工, 2021, 47(1):24−25. doi: 10.3969/j.issn.1008-553X.2021.01.008

    CAI L, PENG P. A brief introduction on the chemical constituents and pharmacological action of rare Chinese medicine Dendrobium officinale [J]. Anhui Chemical Industry, 2021, 47(1): 24−25.(in Chinese) doi: 10.3969/j.issn.1008-553X.2021.01.008
    [2] 黄嘉雯, 陈小阳, 刘涛利, 等. 花色素苷合成关键调节基因的研究进展 [J]. 分子植物育种, 2019, 17(11):3602−3608. doi: 10.13271/j.mpb.017.003602

    HUANG J W, CHEN X Y, LIU T L, et al. Research progress of the key regulatory genes for anthocyanin synthesis [J]. Molecular Plant Breeding, 2019, 17(11): 3602−3608.(in Chinese) doi: 10.13271/j.mpb.017.003602
    [3] 王力伟, 房永雨, 刘红葵, 等. bHLH转录因子的研究进展 [J]. 畜牧与饲料科学, 2020, 41(1):23−27. doi: 10.12160/j.issn.1672-5190.2020.01.005

    WANG L W, FANG Y Y, LIU H K, et al. Research progress of bHLH transcription factors [J]. Animal Husbandry and Feed Science, 2020, 41(1): 23−27.(in Chinese) doi: 10.12160/j.issn.1672-5190.2020.01.005
    [4] 陈清, 汤浩茹, 董晓莉, 等. 植物Myb转录因子的研究进展 [J]. 基因组学与应用生物学, 2009, 28(2):365−372.

    CHEN Q, TANG H R, DONG X L, et al. Progress in the study of plant myb transcription factors [J]. Genomics and Applied Biology, 2009, 28(2): 365−372.(in Chinese)
    [5] AMOUTZIAS G, VERON A, WEINER J, et al. One billion years of bZIP transcription factor evolution: Conservation and change in dimerization and DNA-binding site specificity [J]. Molecular Biology and Evolution, 2006, 24(3): 827−835. doi: 10.1093/molbev/msl211
    [6] 覃超. 甜瓜CmbHLH93和CmbHLH130基因在果实发育中的作用[D]. 呼和浩特: 内蒙古大学, 2020: 84-86.

    QIN C. The role of CmbHLH93 and CmbHLH130 in fruit development of melon[D]. Hohhot: Inner Mongolia University, 2020: 84-86. (in Chinese)
    [7] 张娇. 两个bHLH转录因子(AtLPl和AtLP2)在拟南芥细胞伸长生长中的功能研究[D]. 武汉: 华中师范大学, 2019: 28-29.

    ZHANG J. Study on the roles of two bHLH transcription factors(AtLPl and AtLP2)in cell elongation of Arabidopsis thaliana[D]. Wuhan: Central China Normal University, 2019: 28-29. (in Chinese)
    [8] LIU Y, LI X, LI K, et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis [J]. PLoS Genetics, 2013, 9(10): e1003861. doi: 10.1371/journal.pgen.1003861
    [9] 宋建辉. bHLH113调控拟南芥开花和花青素合成的分子机制研究[D]. 杭州: 浙江农林大学, 2020.

    SONG J H. The molecular regulatory mechanism of flowering and anthocyanin by bHLH113 in Arabidopsis[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
    [10] WU H H, REN Z Y, ZHENG L, et al. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton [J]. The Crop Journal, 2021, 9(5): 1049−1059. doi: 10.1016/j.cj.2020.10.014
    [11] ZHANG J H, LV H Z, LIU W J, et al. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza [J]. Chinese Herbal Medicines, 2020, 12(3): 237−246. doi: 10.1016/j.chmed.2020.04.001
    [12] MENG F W, YANG C, CAO J D, et al. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice [J]. Journal of Integrative Plant Biology, 2020, 62(10): 1552−1573. doi: 10.1111/jipb.12922
    [13] 尹航. 露地菊CgbHLH113基因的克隆及功能分析[D]. 哈尔滨: 东北林业大学, 2021.

    YIN H. Cloning and functional analysis of CgbHLH113 gene from Chrysanthemum × grandiflora[D]. Harbin: Northeast Forestry University, 2021. (in Chinese)
    [14] LI Y Y, SUI X Y, YANG J S, et al. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.) [J]. Biochemical and Biophysical Research Communications, 2020, 522(1): 233−239. doi: 10.1016/j.bbrc.2019.11.063
    [15] YI K K, WU Z C, ZHOU J, et al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice [J]. Plant Physiology, 2005, 138(4): 2087−2096. doi: 10.1104/pp.105.063115
    [16] WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(2): 387−398. doi: 10.1007/s11240-016-0953-1
    [17] CHEN H C, CHENG W H, HONG C Y, et al. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively [J]. Rice, 2018, 11(1): 50. doi: 10.1186/s12284-018-0244-z
    [18] GAO Y, WU M Q, ZHANG M J, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty [J]. Plant Molecular Biology, 2018, 97(4): 311−323.
    [19] REN Y R, YANG Y Y, ZHAO Q, et al. MdCIB1, an apple bHLH transcription factor, plays a positive regulator in response to drought stress [J]. Environmental and Experimental Botany, 2021, 188: 104523. doi: 10.1016/j.envexpbot.2021.104523
    [20] ZHAO Q, XIANG X H, LIU D, et al. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis [J]. Frontiers in Plant Science, 2018, 9: 381. doi: 10.3389/fpls.2018.00381
    [21] DONG H Z, CHEN Q M, DAI Y Q, et al. Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri) [J]. BMC Plant Biology, 2021, 21(1): 86. doi: 10.1186/s12870-021-02862-5
    [22] JIN R, KIM H S, YU T, et al. Identification and function analysis of bHLH genes in response to cold stress in sweetpotato [J]. Plant Physiology and Biochemistry, 2021, 169: 224−235. doi: 10.1016/j.plaphy.2021.11.027
    [23] YU Z M, ZHANG G H, TEIXEIRA DA SILVA J A, et al. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development [J]. Plant Science, 2021, 309: 110952. doi: 10.1016/j.plantsci.2021.110952
    [24] CHEN Y, WANG Y Z, LYU P, et al. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale [J]. Journal of Plant Research, 2019, 132(3): 419−429. doi: 10.1007/s10265-019-01099-6
    [25] 张志勇, 阳静, 齐泽民. 铁皮石斛总RNA提取方法的比较研究 [J]. 江苏农业科学, 2017, 45(4):33−35. doi: 10.15889/j.issn.1002-1302.2017.04.009

    ZHANG Z Y, YANG J, QI Z M. Comparative study on extraction methods of total RNA from Dendrobium candidum [J]. Jiangsu Agricultural Sciences, 2017, 45(4): 33−35.(in Chinese) doi: 10.15889/j.issn.1002-1302.2017.04.009
    [26] ZHANG G Q, LIU K W, LI Z, et al. The Apostasia genome and the evolution of orchids [J]. Nature, 2017, 549(7672): 379−383. doi: 10.1038/nature23897
    [27] WANG Y, LIU A Z. Genomic characterization and expression analysis of basic Helix-loop-Helix (bHLH) family genes in traditional Chinese herb Dendrobium officinale [J]. Plants (Basel, Switzerland), 2020, 9(8): 1044.
    [28] 李季生, 李娜, 贾漫丽, 等. 基于转录组数据挖掘桑树bHLH转录因子家族 [J]. 分子植物育种, 2022, 20(6):1798−1810. doi: 10.13271/j.mpb.020.001798

    LI J S, LI N, JIA M L, et al. Mining bHLH transcription factor family of mulberry based on transcriptome data [J]. Molecular Plant Breeding, 2022, 20(6): 1798−1810.(in Chinese) doi: 10.13271/j.mpb.020.001798
    [29] 王菊萍, 王珍, 张铁军, 等. 蒺藜苜蓿MtbHLH148转录因子的克隆与转化及其功能分析 [J]. 西北植物学报, 2019, 39(6):963−973. doi: 10.7606/j.issn.1000-4025.2019.06.0963

    WANG J P, WANG Z, ZHANG T J, et al. Cloning and analysis of a basic Helix-loop-Helix (bHLH) transcription factor MtbHLH148 from Medicago truncatula L [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(6): 963−973.(in Chinese) doi: 10.7606/j.issn.1000-4025.2019.06.0963
    [30] SUN W J, JIN X, MA Z T, et al. Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses [J]. International Journal of Biological Macromolecules, 2020, 155: 1478−1490. doi: 10.1016/j.ijbiomac.2019.11.126
    [31] 杨贞, 蔡友铭, 张永春, 等. 基于SRAP分子标记的铁皮石斛遗传多样性分析 [J]. 上海农业学报, 2019, 35(5):23−27. doi: 10.15955/j.issn1000-3924.2019.05.05

    YANG Z, CAI Y M, ZHANG Y C, et al. Genetic diversity analysis of Dendrobium officinale based on SRAP molecular markers [J]. Acta Agriculturae Shanghai, 2019, 35(5): 23−27.(in Chinese) doi: 10.15955/j.issn1000-3924.2019.05.05
    [32] 朱璐璐, 周波. bHLH蛋白在植物发育及非生物胁迫中的调控[J/OL]. 分子植物育种, 2021: 1-14. (2021-02-23). https://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html.

    ZHU L L, ZHOU B. Regulation of bHLH protein in plant development and abiotic stress[J/OL]. Molecular Plant Breeding, 2021: 1-14. (2021-02-23). https://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html.(in Chinese)
    [33] CASTILHOS G, LAZZAROTTO F, SPAGNOLO-FONINI L, et al. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought [J]. Plant Science, 2014, 223: 1−7. doi: 10.1016/j.plantsci.2014.02.010
    [34] LIU Y J, JI X Y, NIE X G, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs [J]. The New Phytologist, 2015, 207(3): 692−709. doi: 10.1111/nph.13387
    [35] JI X Y, NIE X G, LIU Y J, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation [J]. Tree Physiology, 2016, 36(2): 193−207.
    [36] 耿晶晶. 甜橙bHLH家族转录因子发掘及CsbHLH18抗寒功能鉴定与作用机制解析[D]. 武汉: 华中农业大学, 2018: 77-79.

    GENG J J. Genome-wide identification of bHLH transcription factor family in sweet orange(Citrus sinensis) and functional characterization and mechanism analysis of CsbHLH18 in cold resistance[D]. Wuhan: Huazhong Agricultural University, 2018: 77-79. (in Chinese)
    [37] PARK S, LEE C, DOHERTY C J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network [J]. The Plant Journal, 2015, 82(2): 193−207. doi: 10.1111/tpj.12796
    [38] CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants [J]. Methods in Molecular Biology (Clifton, N J), 2010, 639: 39−55.
    [39] CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes & Development, 2003, 17(8): 1043−1054.
    [40] SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science, 2018, 23(7): 623−637. doi: 10.1016/j.tplants.2018.04.002
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  133
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-07-28
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回