Interacting Proteins with JsMYB305 Transcription Factor in Jasminum sambac
-
摘要:
目的 茉莉花JsMYB305是参与萜烯合成酶(Terpene synthetases,TPS)基因调控茉莉花香气的转录因子。本研究旨在进一步分析JsMYB305转录因子调控茉莉花香气物质代谢的可能机制。 方法 基于茉莉花瓣酵母文库,以白色花苞和完全开放时的茉莉花为材料构建双杂交文库,通过酵母双杂交的方式筛选JsMYB305的互作蛋白并进行鉴定和验证。 结果 JsMYB305全长具有显著的自激活性,分别扩增不同长度的片段进行自激活验证,当编码长度≤510 bp时,JsMYB305没有自激活性。进一步以pGBKT7-JsMYB305(510 bp)为诱饵,从酵母双杂交文库中筛选到1个互作蛋白,经鉴定为水杨酸甲酯转移酶(Salicylic acid carboxyl methyltransferase,SAMT)蛋白。酵母定向双杂验证表明JsMYB305与JsSAMT具有相互作用。 结论 SAMT属于苯丙烷/丙环生物合成途径,故JsMYB305转录因子也参与了茉莉花苯丙烷/丙环类香气物质合成过程。研究结果为进一步深入研究JsMYB305在茉莉花香气合成中的调控机理提供了参考。 Abstract:Objective Aroma-regulating mechanism of the transcription factor JsMYB305 associated with terpene synthetases gene of jasmine flower was investigated. Method From the jasmine floral petal yeast database a two-hybrid library was constructed using the white buds and fully open flowers. Proteins that interacted with JsMYB305 were identified and verified by the yeast two-hybrid method. Result The full length of JsMYB305 was significantly self-activated, and the fragments of different lengths were amplified for verification. At a coding length less than or equal to 510 bp, JsMYB305 showed no self-activation. Applying a 510 bp pGBKT7-JsMYB305 as a bait, an interacting protein was obtained from the yeast two-hybrid library and identified to be salicylic acid carboxyl methyltransferase (SAMT). The yeast-directed two-hybrid validation indicated that JsMYB305 interacted with JsSAMT. Conclusion Since SAMT presents in the biosynthetic pathway of phenylpropane/propane, the JsMYB305 transcription factor was believed to also relate to the synthesis of similar aromatic substances in jasmine flowers. -
Key words:
- Jasminum sambac /
- MYB transcription factor /
- yeast two-hybrid /
- interaction protein
-
图 4 构建pGBKT7-JsMYB305全长诱饵载体时所涉及的PCR检测及自激活检测
M:DL2 000 Marker; 1、10−1、10−2表示稀释倍数;A:JsMYB305全长编码序列(588 bp)的扩增,1为目的基因;B:pGBKT7-JsMYB305(588 bp)菌液PCR检测,1~4为阳性条带;C:pGBKT7空白载体和pGBKT7-JsMYB305诱饵载体分别转化Y2H 的自激活检测。
Figure 4. PCR and self-activation detection involved in constructing pGBKT7-JsMYB305 full-length bait vector
M: DL2 000 marker; 1, 10−1, and 10−2: dilution factors; A: amplification of full-length coding sequence (588 bp) of JsMYB305; 1: target gene; B: PCR detection of pGBKT7-JsMYB305 (588 bp) bacterial liquid; 1–4: positive bands; C: self-activation detection of Y2H transformed with pGBKT7 blank vector or pGBKT7-JsMYB305 bait vector.
图 5 不同长度pGBKT7-JsMYB305诱饵载体的构建
M:DL2 000 Marker;A:不同长度的JsMYB305编码序列扩增;B: pGBKT7-JsMYB305(510 bp)菌液PCR;C:pGBKT7-JsMYB305(435 bp)菌液PCR,1、3、5为筛选阳性条带;D:pGBKT7-JsMYB305(360 bp)菌液PCR;E:pGBKT7-JsMYB305(285 bp)菌液PCR;F:pGBKT7-JsMYB305(210 bp)菌液PCR。
Figure 5. Construction of pGBKT7-JsMYB305 bait vectors of varied lengths
M: DL2 000 marker; A: JsMYB305 coding sequence amplification of different lengths; B: pGBKT7-JsMYB305 (510 bp) bacterial liquid PCR; C: pGBKT7-JsMYB305 (435 bp) bacterial liquid PCR; 1, 3, and 5: positive bands; D: pGBKT7-JsMYB305 (360 bp) bacterial liquid PCR; E: pGBKT7-JsMYB305 (285 bp) bacterial liquid PCR; F: pGBKT7-JsMYB305 (210 bp) bacterial liquid PCR.
图 7 pGBKT7-JsMYB305诱饵载体与文库杂交后的效率
A:杂交后稀释10000倍的DDO(SD/-Trp/-Leu)平板;B:杂交后稀释10000倍的SD/-Leu平板。
Figure 7. Efficiency of pGBKT7-JsMYB305 bait vector and library after hybridization
A: DDO (SD/-Trp/-Leu) plate diluted 10 000 times after hybridization; B: SD/-Leu plate diluted 10 000 times after hybridization.
图 10 pGBKT7-JsMYB305(510 bp)与pGADT7-JsSAMT的互作验证
1、10−1、10−2表示稀释倍数;从上往下分别为p53+T阳性对照、pGBKT7+pGADT7阴性对照、pGBKT7-JsMYB305(510 bp)+pGADT7-JsSAMT。
Figure 10. Verification on interaction between pGBKT7-JsMYB305 (510 bp) and pGADT7-JsSAMT
1, 10−1, and 10−2: dilutions; p53+T positive control, pGBKT7+pGADT7 negative control, and pGBKT7-JsMYB305 (510bp)+pGADT7-JsSAMT shown from top to bottom.
表 1 酵母双杂交诱饵载体构建中扩增 JsMYB305 编码序列使用的引物
Table 1. Primers used to amplify coding sequence of JsMYB305 for construction of yeast two-hybrid bait vector
引物名称 Primer name 引物序列 Sequence (5′-3′) pGBKT7-JsMYB305(588 bp)- F tcagaggaggacctgcatatgATGGACAAGAAAAT
ATGCAATAGCTCpGBKT7-JsMYB305(588 bp)- R ccgctgcaggtcgacggatccTTAATCCCCATTAAG
TAACTGGATGpGBKT7-JsMYB305(510 bp)- R ccgctgcaggtcgacggatccTCCATGGAAAGCTT
CCATGTTGpGBKT7-JsMYB305(435 bp)- R ccgctgcaggtcgacggatccACCGGAGATCTG
GCTTGTGCpGBKT7-JsMYB305(360 bp)- R ccgctgcaggtcgacggatccGTGTTTAATGTGCT
TTTGGATTCTAGTpGBKT7-JsMYB305(285 bp)- R ccgctgcaggtcgacggatccCGCAATTTTTGACCACCTGTT pGBKT7-JsMYB305(210 bp)- R ccgctgcaggtcgacggatccTCCCCGTCTCACATCTGGTC 上游引物中划线部分为Nde I酶切位点,下游引物中划线部分为BamH I酶切位点。扩增不同长度的JsMYB305编码序列时,上游引物相同,下游引物不同。
Underlined sequence in upstream primer indicates Nde I restriction site; downstream primer indicates BamH I restriction site; at amplification of JsMYB305 coding sequences of different lengths, upstream primers were identical, while downstream primers different.表 2 克隆JsSAMT基因所用的引物
Table 2. Primers used for cloning JsSAMT
引物名称
Primer name引物长度
Primer length/bp序列 (5′-3′)
SequencepGADT7-JsSAMT-F 42 gtaccagattacgctcatatgATGAGATCAGTGGTGGAGCCC pGADT7-JsSAMT-R 50 cagctcgagctcgatggatccTTAAAACAACACTGATTGAAC
ACTAAAGA上游引物中划线部分为Nde I酶切位点,下游引物中划线部分为BamH I酶切位点。
Underlined sequence in upstream primer indicates the Nde I restriction site; downstream primer indicates BamH I restriction site. -
[1] 蒋慧颖, 马玉仙, 黄建锋, 等. 茉莉花茶保健功效及相关保健产品研究现状 [J]. 山西农业大学学报(自然科学版), 2016, 36(8):604−608. doi: 10.13842/j.cnki.issn1671-8151.2016.08.015JIANG H Y, MA Y X, HUANG J F, et al. The research status of Jasmine tea health care efficacy and related health care products [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(8): 604−608.(in Chinese) doi: 10.13842/j.cnki.issn1671-8151.2016.08.015 [2] 陆宁, 宛晓春, 潘冬. 茉莉花茶香气成分与品质之间关系的初步研究 [J]. 食品科学, 2004, 25(6):93−97. doi: 10.3321/j.issn:1002-6630.2004.06.019LU N, WAN X C, PAN D. Extraction and analysis of jasmine tea aroma constituents of three different grades [J]. Food Science, 2004, 25(6): 93−97.(in Chinese) doi: 10.3321/j.issn:1002-6630.2004.06.019 [3] 林慧玥, 万新龙, 杜永均, 等. 丁香精油和茉莉精油对抑郁症小鼠的治疗效果及其作用机制 [J]. 温州医科大学学报, 2018, 48(5):330−337. doi: 10.3969/j.issn.2095-9400.2018.05.004LIN H Y, WAN X L, DU Y J, et al. Efficacy and mechanism of clove oil and jasmine oil on treatment of depressive mice [J]. Journal of Wenzhou Medical University, 2018, 48(5): 330−337.(in Chinese) doi: 10.3969/j.issn.2095-9400.2018.05.004 [4] 李丽华, 郑玲, 刘晓松. 固相微萃取气质联用分析茉莉花的香气成分 [J]. 化学分析计量, 2006, 15(2):37−39. doi: 10.3969/j.issn.1008-6145.2006.02.012LI L H, ZHENG L, LIU X S. Analysis of jasmin fragrance isolated with solid phase microextraction by gc-ms [J]. Chemical Analysis and Meterage, 2006, 15(2): 37−39.(in Chinese) doi: 10.3969/j.issn.1008-6145.2006.02.012 [5] 王淑燕, 赵峰, 饶耿慧, 等. 基于电子鼻和ATD-GC-MS技术分析茉莉花茶香气成分的产地差异 [J]. 食品工业科技, 2021, 42(15):234−239. doi: 10.13386/j.issn1002-0306.2020080064WANG S Y, ZHAO F, RAO G H, et al. Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS [J]. Science and Technology of Food Industry, 2021, 42(15): 234−239.(in Chinese) doi: 10.13386/j.issn1002-0306.2020080064 [6] 程淑华, 叶秋萍, 徐小东, 等. 基于亚临界萃取技术的茉莉花头香精油香气组分分析 [J]. 食品科技, 2016, 41(1):280−284. doi: 10.13684/j.cnki.spkj.2016.01.055CHENG S H, YE Q P, XU X D, et al. Aroma components analysis of jasmine fragrant volatile oil based on application of subcritical extraction technology [J]. Food Science and Technology, 2016, 41(1): 280−284.(in Chinese) doi: 10.13684/j.cnki.spkj.2016.01.055 [7] 黎贵卿, 李区宁, 宋业昌, 等. 茉莉花香气、茉莉花精油及净油挥发性成分的HS-SPME-GC-MS和GC-MS比较分析 [J]. 广西林业科学, 2020, 49(1):139−144. doi: 10.3969/j.issn.1006-1126.2020.01.027LI G Q, LI Q N, SONG Y C, et al. Analysis on volatile components of jasmine aroma, jasmine essential oil and absolute oil by HS-SPME-GC-MS, GC-MS [J]. Guangxi Forestry Science, 2020, 49(1): 139−144.(in Chinese) doi: 10.3969/j.issn.1006-1126.2020.01.027 [8] 刘建军, 周顺玉, 司辉清, 等. 晴天茉莉花与最佳开放条件下雨水茉莉花香气成分比较分析 [J]. 西南农业学报, 2011, 24(2):722−727. doi: 10.3969/j.issn.1001-4829.2011.02.071LIU J J, ZHOU S Y, SI H Q, et al. Comparison analysis of aromatic constituents between sunny jasmine and rainy jasmine under optimal flowering condition [J]. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 722−727.(in Chinese) doi: 10.3969/j.issn.1001-4829.2011.02.071 [9] 李鹤, 俞滢, 陈桂信, 等. 双瓣茉莉花(Jasminum sambac(L. )ait)开放过程香气成分的动态变化 [J]. 茶叶学报, 2015, 56(1):29−38. doi: 10.3969/j.issn.1007-4872.2015.01.007LI H, YU Y, CHEN G X, et al. Changes on aromatics of double disc jasmine during petal-opening [J]. Acta Tea Sinica, 2015, 56(1): 29−38.(in Chinese) doi: 10.3969/j.issn.1007-4872.2015.01.007 [10] 陈梅春, 林增钦, 郑梅霞, 等. 茉莉花茶香气品质评价指标的构建与研究 [J]. 茶叶通讯, 2021, 48(1):90−97. doi: 10.3969/j.issn.1009-525X.2021.01.013CHEN M C, LIN Z Q, ZHENG M X, et al. Construction and study on aroma quality evaluation index of jasmine tea [J]. Journal of Tea Communication, 2021, 48(1): 90−97.(in Chinese) doi: 10.3969/j.issn.1009-525X.2021.01.013 [11] 陆宁, 宛晓春. 茉莉精油微胶囊香气成分的释放研究 [J]. 食品与发酵工业, 2004, 30(5):30−34. doi: 10.3321/j.issn:0253-990X.2004.05.008LU N, WAN X C. Studies on microencapsulated of jasmine essential oil and release of flavor compounds [J]. Food and Fermentation Industries, 2004, 30(5): 30−34.(in Chinese) doi: 10.3321/j.issn:0253-990X.2004.05.008 [12] BERA P, MUKHERJEE C, MITRA A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac [J]. Plant Science, 2017, 256: 25−38. doi: 10.1016/j.plantsci.2016.11.013 [13] DUDAREVA N, PICHERSKY E, GERSHENZON J. Biochemistry of plant volatiles [J]. Plant Physiology, 2004, 135(4): 1893−1902. doi: 10.1104/pp.104.049981 [14] BICK J A, LANGE B M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane [J]. Archives of Biochemistry and Biophysics, 2003, 415(2): 146−154. doi: 10.1016/S0003-9861(03)00233-9 [15] TRAN THANH H, VERGOIGNAN C, CACHON R, et al. Recombinant hydroperoxide lyase for the production of aroma compounds: Effect of substrate on the yeast Yarrowia lipolytica [J]. Journal of Molecular Catalysis B:Enzymatic, 2008, 52/53: 146−152. doi: 10.1016/j.molcatb.2007.12.010 [16] DUDAREVA N, ANDERSSON S, ORLOVA I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 933−938. doi: 10.1073/pnas.0407360102 [17] 沈淑铃. CitAP2.10和CitMYC3对甜橙果实特征芳香物质瓦伦烯合成的转录调控[D]. 杭州: 浙江大学, 2017.SHEN S L. Transciptional regulation of Citrus valencene synthesis by CitAP2.10 and CitMYC3[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [18] 陈笛, 陈雪津, 郭永春, 等. 红蓝光对茉莉花香气成分及相关基因表达的影响 [J]. 应用与环境生物学报, 2020, 26(4):867−877. doi: 10.19675/j.cnki.1006-687x.2019.09007CHEN D, CHEN X J, GUO Y C, et al. Effect of red and blue light on the aroma components and gene expression in Jasminum sambac [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 867−877.(in Chinese) doi: 10.19675/j.cnki.1006-687x.2019.09007 [19] MUMM R, SCHRANK K, WEGENER R, et al. Chemical analysis of volatiles emitted by Pinus svlvestris after induction by insect oviposition [J]. Journal of Chemical Ecology, 2003, 29(5): 1235−1252. doi: 10.1023/A:1023841909199 [20] SCHMELZ E A, ALBORN H T, ENGELBERTH J, et al. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize [J]. Plant Physiology, 2003, 133(1): 295−306. doi: 10.1104/pp.103.024174 [21] DUDAREVA N, NEGRE F, NAGEGOWDA D A, et al. Plant volatiles: Recent advances and future perspectives [J]. Critical Reviews in Plant Sciences, 2006, 25(5): 417−440. doi: 10.1080/07352680600899973 [22] GOUINGUENÉ S P, TURLINGS T C J. The effects of abiotic factors on induced volatile emissions in corn plants [J]. Plant Physiology, 2002, 129(3): 1296−1307. doi: 10.1104/pp.001941 [23] 陈可钦. 苹果SND1与MYB46转录因子的功能及作用机制[D]. 沈阳: 沈阳农业大学, 2019.CHEN K Q. The function and regulatory mechanism of SND1 and MYB46 transcription factors in apple[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) [24] QIAN W Q, TAN G H, LIU H X, et al. Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter [J]. Plant Cell Reports, 2007, 26(1): 85−93. [25] 王璐. 番茄果实后熟与叶片衰老相关的S1WRKY转录因子功能分析[D]. 广州: 华南农业大学, 2016.WANG L. The function of WRKY transcription factors in fruit ripening of tomato[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese) [26] 孙君, 陈雪津, 陈笛, 等. 茉莉花JsPAL基因及其启动子克隆与表达分析 [J]. 西北植物学报, 2020, 40(6):949−956. doi: 10.7606/j.issn.1000-4025.2020.06.0949SUN J, CHEN X J, CHEN D, et al. Cloning and expression analysis of phenylalanine ammonia-lyase gene from Jasminum sambac and isolation of its promoter [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(6): 949−956.(in Chinese) doi: 10.7606/j.issn.1000-4025.2020.06.0949 [27] 陈笛, 王鹏杰, 郑玉成, 等. 茉莉花MVD基因及其启动子的克隆与表达 [J]. 福建农林大学学报(自然科学版), 2019, 48(3):309−315.CHEN D, WANG P J, ZHENG Y C, et al. Cloning and expression of MVD gene and its promoter in Jasminum sambac [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(3): 309−315.(in Chinese) [28] 陈笛, 陈雪津, 郭永春, 等. 茉莉花芳樟醇生物合成关键基因的克隆与表达分析 [J]. 西北植物学报, 2019, 39(8):1344−1352. doi: 10.7606/j.issn.1000-4025.2019.08.1344CHEN D, CHEN X J, GUO Y C, et al. Cloning and expression analysis of JsNEL/LINS from Jasminum sambac [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(8): 1344−1352.(in Chinese) doi: 10.7606/j.issn.1000-4025.2019.08.1344 [29] 陈笛, 王鹏杰, 郑玉成, 等. 茉莉花磷酸甲羟戊酸激酶基因克隆及表达分析 [J]. 南方农业学报, 2018, 49(10):1909−1916. doi: 10.3969/j.issn.2095-1191.2018.10.02CHEN D, WANG P J, ZHENG Y C, et al. Cloning and expression analysis of phosphomevalonate kinase gene from Jasminum sambac (L.) Ait [J]. Journal of Southern Agriculture, 2018, 49(10): 1909−1916.(in Chinese) doi: 10.3969/j.issn.2095-1191.2018.10.02 [30] 俞滢, 陈丹, 孙君, 等. 茉莉花萜类合成酶基因JsTPS的克隆及其表达分析 [J]. 园艺学报, 2016, 43(2):356−364. doi: 10.16420/j.issn.0513-353x.2015-0803YU Y, CHEN D, SUN J, et al. Cloning and expression analysis of terpene synthase gene from Jasminum sambac [J]. Acta Horticulturae Sinica, 2016, 43(2): 356−364.(in Chinese) doi: 10.16420/j.issn.0513-353x.2015-0803 [31] 孙君, 陈桂信, 叶乃兴, 等. 茉莉花香气相关基因JsDXS及其启动子的克隆与表达分析 [J]. 园艺学报, 2014, 41(6):1236−1244. doi: 10.16420/j.issn.0513-353x.2014.06.011SUN J, CHEN G X, YE N X, et al. Cloning and expression analysis of deoxyoxylulose-5-phosphate synthase gene related to aroma from Jasminum sambac and isolation of its promoter [J]. Acta Horticulturae Sinica, 2014, 41(6): 1236−1244.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014.06.011 [32] 崔萌, 刘志钦, 叶乃兴, 等. 茉莉花香气相关基因JsGDS启动子的克隆及功能分析 [J]. 分子植物育种, 2021, 19(2):441−447. doi: 10.13271/j.mpb.019.000441CUI M, LIU Z Q, YE N X, et al. Cloning and functional analysis of the aroma-related gene JsGDS promoter from Jasminum sambac [J]. Molecular Plant Breeding, 2021, 19(2): 441−447.(in Chinese) doi: 10.13271/j.mpb.019.000441 [33] 林俊杰, 李小婷, 陈雪津, 等. 茉莉花香气相关基因JsTPS启动子的克隆与活性分析 [J]. 热带作物学报, 2022, 43(1):43−50. doi: 10.3969/j.issn.1000-2561.2022.01.006LIN J J, LI X T, CHEN X J, et al. Cloning and activity analysis of JsTPS promoter of Jasminum sambac aroma related gene [J]. Chinese Journal of Tropical Crops, 2022, 43(1): 43−50.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.01.006 [34] 陈桂信, 俞滢, 刘雨轩, 等. 茉莉香气释放相关基因分离及JsBEBT的克隆与表达分析 [J]. 分子植物育种, 2021, 19(20):6662−6670. doi: 10.13271/j.mpb.019.006662CHEN G X, YU Y, LIU Y X, et al. Isolation of related genes cloning and expression analysis of JsBEBT in jasmine aroma [J]. Molecular Plant Breeding, 2021, 19(20): 6662−6670.(in Chinese) doi: 10.13271/j.mpb.019.006662 [35] 张月, 袁媛, 何弦, 等. 茉莉花JsMYB108和JsMYB305基因的克隆及其对TPS基因的激活作用 [J]. 热带作物学报, 2021, 42(6):1539−1548. doi: 10.3969/j.issn.1000-2561.2021.06.005ZHANG Y, YUAN Y, HE X, et al. Cloning of JsMYB108 and JsMYB305 and analysis of their activation on TPS gene in Jasminum sambac [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1539−1548.(in Chinese) doi: 10.3969/j.issn.1000-2561.2021.06.005 [36] 秦发亮, 刘文文, 李莉, 等. 利用酵母双杂交技术筛选介体灰飞虱中与水稻条纹病毒病害特异蛋白互作的蛋白质 [J]. 中国农业科学, 2014, 47(14):2784−2794. doi: 10.3864/j.issn.0578-1752.2014.14.009QIN F L, LIU W W, LI L, et al. Screening of putative proteins in vector Laodelphax striatellus which are interacted with disease-specific protein of rice stripe virus by yeast two-hybrid based on the split-ubiquitin [J]. Scientia Agricultura Sinica, 2014, 47(14): 2784−2794.(in Chinese) doi: 10.3864/j.issn.0578-1752.2014.14.009 [37] 柯丹霞, 彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白 [J]. 作物学报, 2020, 46(1):31−39.KE D X, PENG K P. Screening of NFR1α-interactive proteins in soybean using yeast two hybrid system [J]. Acta Agronomica Sinica, 2020, 46(1): 31−39.(in Chinese) [38] 赵焕之, 赵其平, 朱顺海, 等. 免疫共沉淀联合质谱技术筛选柔嫩艾美耳球虫钙依赖蛋白激酶3互作蛋白 [J]. 中国动物传染病学报, 2020, 28(5):1−7.ZHAO H Z, ZHAO Q P, ZHU S H, et al. Identification of etcdpk 3 interacting proteins by co-immunopre cipitation in combination with mass spectrometry [J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(5): 1−7.(in Chinese) [39] 訾亮, 洪灏, 翟金玲, 等. 拟南芥NiNJA基因酵母双杂诱饵载体构建及互作蛋白的筛选 [J]. 热带生物学报, 2013, 4(1):31−35. doi: 10.3969/j.issn.1674-7054.2013.01.006ZI L, HONG H, ZHAI J L, et al. Construction of bait vector for NiNJA gene in Arabidopsis and screening the interacted proteins using yeast two-hybrid [J]. Journal of Tropical Biology, 2013, 4(1): 31−35.(in Chinese) doi: 10.3969/j.issn.1674-7054.2013.01.006 [40] 邱志刚, 徐兆师, 郑天慧, 等. 小麦ERF转录因子W17互作蛋白的筛选和解析 [J]. 作物学报, 2011, 37(5):803−810. doi: 10.3724/SP.J.1006.2011.00803QIU Z G, XU Z S, ZHENG T H, et al. Screening and identification of proteins interacting with ERF transcription factor W17 in wheat [J]. Acta Agronomica Sinica, 2011, 37(5): 803−810.(in Chinese) doi: 10.3724/SP.J.1006.2011.00803 [41] 王怀琴, 李莎莎, 曹晓燕. 丹参转录因子SmMYC2转录自激活区域鉴定及互作蛋白的筛选 [J]. 农业生物技术学报, 2018, 26(10):1670−1677.WANG H Q, LI S S, CAO X Y. Identification of transcription activity region and screening of interaction proteins of SmMYC2 transcription factor in Salvia miltiorrhiza [J]. Journal of Agricultural Biotechnology, 2018, 26(10): 1670−1677.(in Chinese) [42] 樊锦涛, 贾娇, 蒋琛茜, 等. 拟南芥转录因子AtMYB73转录活性区域分析及互作蛋白的筛选 [J]. 中国农业科学, 2014, 47(23):4754−4762. doi: 10.3864/j.issn.0578-1752.2014.23.020FAN J T, JIA J, JIANG C X, et al. Regional analysis of transcription activity and screening of interaction proteins of AtMYB73 transcription factor in Arabidopsis [J]. Scientia Agricultura Sinica, 2014, 47(23): 4754−4762.(in Chinese) doi: 10.3864/j.issn.0578-1752.2014.23.020 [43] LIU F, XIAO Z N, YANG L, et al. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers [J]. The New Phytologist, 2017, 215(4): 1490−1502. doi: 10.1111/nph.14675 [44] 赵国飞, 罗理勇, 常睿, 等. 离体茉莉花释香过程的香气成分特征 [J]. 食品科学, 2015, 36(18):120−126. doi: 10.7506/spkx1002-6630-201518022ZHAO G F, LUO L Y, CHANG R, et al. Aroma characteristics of jasmine during postharvest release of fragrance [J]. Food Science, 2015, 36(18): 120−126.(in Chinese) doi: 10.7506/spkx1002-6630-201518022 [45] 陈梅春, 朱育菁, 刘晓港, 等. 茉莉鲜花[Jasminum sambac (L. ) aiton]香气成分研究 [J]. 热带作物学报, 2017, 38(4):747−751. doi: 10.3969/j.issn.1000-2561.2017.04.025CHEN M C, ZHU Y J, LIU X G, et al. Characteristic of the aroma compounds of Jasminum sambac (L. ) aiton [J]. Chinese Journal of Tropical Crops, 2017, 38(4): 747−751.(in Chinese) doi: 10.3969/j.issn.1000-2561.2017.04.025 [46] 赵文, 王静, 李伟滔, 等. 应用GST pull-down技术筛选水稻抗稻瘟病蛋白PID3互作蛋白的研究 [J]. 植物病理学报, 2015, 45(5):476−485.ZHAO W, WANG J, LI W T, et al. Screening of rice proteins interacting with the rice blast resistance protein PID3 byST pull-dow N [J]. Acta Phytopathologica Sinica, 2015, 45(5): 476−485.(in Chinese) [47] 赵杰, 王兵, 骆梅, 等. GST-pull down技术筛选毛白杨天冬氨酸蛋白酶PtoAED3互作蛋白 [J]. 北京林业大学学报, 2021, 43(5):64−74. doi: 10.12171/j.1000-1522.20200365ZHAO J, WANG B, LUO M, et al. Identification of aspartic acid protease PtoAED3-interacting proteins through GST pull-down assays in Populus tomentosa [J]. Journal of Beijing Forestry University, 2021, 43(5): 64−74.(in Chinese) doi: 10.12171/j.1000-1522.20200365 [48] 万超, 张月, 胡莉, 等. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化 [J]. 福建农业学报, 2022, 37(2):164−169.WAN C, ZHANG Y, HU L, et al. Prokaryotic expression and purification of JsMYB305 transcription factor in Jasminum sambac [J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 164−169.(in Chinese)