Adsorption of Pig Farm Biogas Slurry Contaminants by Eichhornia crassipes Substrate and Use of Spent Material for Fertilization
-
摘要:
目的 探讨凤眼莲Eichhornia crassipes(Mart.) Solms基质对猪场养殖沼液中污染物的吸附去除效率,结合其堆肥所得到的有机肥产品的可利用性,为优化凤眼莲人工湿地传统模式及凤眼莲基质的二次利用提供科学依据。 方法 通过凤眼莲基质吸附猪场沼液试验,研究其对沼液污染物的去除效果和较佳吸附条件;通过堆肥试验,研究基质所吸附氮磷的有机肥转化率和重金属富集特征。 结果 1)新鲜凤眼莲基质对猪场沼液营养性物质的最佳吸附条件为基质长度1.0~2.0 cm、液固比50∶1、吸附时间3 h,该条件下对总固体悬浮物(Total suspended solid, TSS)、化学需氧量(Chemical oxygen demand,CODCr)、总氮(Total nitrogen,TN)、氨氮(Ammonia nitrogen,NH3-N)和总磷(Total phosphorus,TP)的去除率分别为86.3%、72.5%、41.6%、57.2%和69.6%;2)经堆肥后凤眼莲基质从沼液中所吸附的N和P分别有58.8%和42.0%转化为有机肥养分;3)除As外,Cd、Pb、Cr、Hg等未在有机肥中出现富集现象。 结论 猪场沼液处理采用凤眼莲基质吸附+凤眼莲人工湿地+凤眼莲基质堆肥的模式优于凤眼莲人工湿地传统模式。该模式下,凤眼莲基质和猪场沼液均做到了肥料化利用。 Abstract:Objective Ability of water hyacinth (Eichhornia crassipes) substrate in adsorbing contaminants in the biogas slurry from pig farms was studied and spent material utilization for fertilization explored. Method Fresh E. crassipes substrate was blended into the biogas slurry to determine the optimal conditions for a maximized adsorption of heavy metals. The spent material was subsequently composted and analyzed for nutrient conversion and contaminant retention. Result (1) The maximal adsorption on heavy metals was achieved by using 1.0–2.0 cm substratum to treat a liquid-solid ratio of 50∶1 mix for 3 h. The removal rates on total suspended solid (TSS), chemical oxygen demand (CODCr), total nitrogen (TN), ammonia nitrogen (NH3-N), and total phosphorus (TP) from the slurry were 86.3%, 72.5%, 41.6%, 57.2%, and 69.6%, respectively. (2) After composting, 58.8% of N and 42.0% of P of the slurry were converted into organic nutrients in the spent material. (3) Aside from As, heavy metals like Cd, Pb, Cr, and Hg were not significantly retained in the spent material to be used as an organic fertilizer. Conclusion The waste treatment of pig farm biogas slurry was seen superior in efficiency and resource utilization by combining the conventional water hyacinth wetland operation with the contaminant adoption by the E. crassipes substrate followed by the spent material composting for organic fertilization as demonstrated by this study. -
表 1 吸附试验正交表[L9(34)]
Table 1. Orthogonal experiment design, L9(34)
水平
Level因素 Factor A基质大小
Matrix size/cmB液固比
Liquid solid ratio/ (mg·L −1)C吸附时间
Adsorption time/h1 ≤0.5 25∶1 3 2 0.5~1.0 50∶1 6 3 1.0~2.0 100∶1 9 表 2 凤眼莲基质和猪粪原料的基本理化性质(干重,n=3)
Table 2. Basic physicochemical properties of E. crassipes substrate and pig manure
原料
Materials有机碳 OC/% 全氮 TN/% 全磷 TP/% 全钾 TK/% 砷 As/(mg·kg−1) 镉 Cd/(mg·kg−1) 铅 Pb/(mg·kg−1) 铬 Cr/(mg·kg−1) 汞 Hg/(mg·kg−1) 凤眼莲2 # E. crassipes substrate 2 # 41.84 1.47 0.20 5.28 0.10 1.51 5.28 3.37 0.10 猪粪 Pig manure 29.76 2.41 2.06 2.02 0.20 0.44 2.53 3.68 0.30 表 3 不同吸附条件下凤眼莲基质对沼液中各种物质的去除率
Table 3. Removal of contaminants from biogas slurry by E. crassipes substrate under different adsorption conditions
试验组Test group因素
Factor去除率
Removal rate/%A B C TSS CODCr TN NH3-N TP 1 1 1 1 44.3±1.1 8.0±0.9 23.5±0.7 32.7±0.9 43.6±0.3 2 1 2 2 16.2±1.4 20.0±1.4 34.4±1.4 48.2±0.6 54.8±0.1 3 1 3 3 32.4±1.3 84.0±4.0 20.9±0.8 26.6±0.8 54.9±0.3 4 2 1 2 11.7±0.3 28.0±1.7 52.2±2.0 34.3±0.5 55.2±0.2 5 2 2 3 5.2±0.6 80.0±2.0 46.8±0.6 28.6±1.6 54.3±0.2 6 2 3 1 12.2±0.3 52.0±1.5 51.6±1.3 48.8±0.4 55.4±0.2 7 3 1 3 6.5±3.2 20.0±0.7 47.7±0.3 38.9±0.8 54.4±0.1 8 3 2 1 43.6±0.7 44.0±1.8 57.0±1.4 62.4±0.7 55.0±0.1 9 3 3 2 1.2±0.4 80.0±2.2 23.6±1.4 33.6±0.7 71.5±0.6 表 4 不同去除对象在各因素水平下的去除率均值和极差
Table 4. Mean and range of removal targets at various factors and levels
指标
Index参数
Parameter因素 Factor A B C TSS k1 31.0 20.8 33.4 k2 9.7 21.7 9.7 k3 17.1 15.3 14.7 R 21.3 6.4 23.7 Sig. ** NS ** 最优组合 A1B2C1 CODCr k1 37.3 18.7 34.7 k2 53.3 48.0 42.7 k3 48.0 72 .0 61.3 R 16.0 53.3 26.7 Sig. NS ** ** 最优组合 A2B3C3 TN k1 26.3 41.1 44.0 k2 50.2 46.1 36.7 k3 42.8 32.0 38.5 R 23.9 14 .0 7.3 Sig. ** ** NS 最优组合 A2B2C1 NH3-N k1 35.8 35.3 48.0 k2 37.2 46.4 38.7 k3 45.0 36.3 31.4 R 9.1 11.1 16.6 Sig. * ** ** 最优组合 A3B2C1 TP k1 51.1 51.1 51.3 k2 55.0 54.7 60.5 k3 60.3 60.6 54.5 R 9.2 9.5 9.2 Sig. ** ** ** 最优组合 A3B3C2 *表示在0.05的水平上差异显著,**表示在0.01的水平上差异极显著,NS表示差异不显著。
* means significant at P<0.05; ** means extremely significant at P<0.01; NS means not significant.表 5 有机肥产量(干基)及其养分含量
Table 5. Quantity (dry basis) and nutrient contents of organic fertilizer produced
处理
Treatment有机肥产量
Organic fertilizer yields/g有机质
Organic matter/%全氮N/% 全磷P2O5/% 全钾K2O /% 总养分
Total nutrient/%有机肥转化率
Organic fertilizer conversion rate/%F1 784.00±17.58 56.53±1.18 5.40±0.89 1.36±0.19 10.61±0.91 17.37±1.65 33.72±0.44 F2 772.00±13.45 52.92±0.12 5.21±0.81 1.21±0.06 8.70±1.34 15.13±0.62 33.20±0.33 F3 726.00±15.13 59.73±1.72 4.04±0.49 1.17±0.03 5.90±1.00 11.11±1.44 31.23±0.38 F4 735.00±11.53 66.74±1.05 3.87±0.13 0.96±0.09 6.21±0.14 11.04±0.14 31.61±0.29 表 6 是否吸附沼液和不同菌源与有机肥产量及其养分的方差分析
Table 6. Analysis of variance on biogas slurry adsorption and induced bacteria affecting production and nutrients of organic fertilizer
处理
Treatment有机肥产量
Organic fertilizer yields有机质
Organic matterN P2O5 K2O 总养分
Total nutrient有机肥转化率
Organic fertilizer conversion rate凤眼莲基质A 31.778*** 159.044*** 12.876** 12.604** 42.730*** 61.666*** 31.693*** 菌源B 0.032 6.352* 0.221 8.216* 2.099 3.093 0.034 凤眼莲基质A×菌源B 1.553 62.049*** 0.000 0.250 4.071 2.698 1.537 表中A表示凤眼莲基质的沼液吸附情况,B表示添加不同菌源,A × B代表两侧的交互作用。表中数值为方差分析F值。表8同。*表示在0.05的水平上显著,**表示在0.01的水平上极显著,***表示在0.001水平上显著。
A: adsorption of biogas slurry; B: induction of different bacteria; AxB: interaction of A and B. Data are variance F values. Same for below. * indicates significant at P<0.05; ** indicates extremely significant at P<0.01; *** indicates extremely significant at P<0.001.表 7 不同处理下有机肥重金属含量
Table 7. Contents of heavy metals in organic fertilizers produced under different treatments
(单位:mg·kg-1) 处理 Treatment 砷 As 镉 Cd 铅 Pb 铬 Cr 汞 Hg F1 0.57±0.06 1.48±0.35 3.28±0.04 9.96±0.8 0.10±0.01 F2 0.40±0.10 1.35±0.08 3.38±0.19 8.58±1.16 0.09±0.00 F3 0.47±0.20 0.85±0.31 2.66±0.16 8.03±0.98 0.07±0.03 F4 0.43±0.12 0.56±0.10 2.58±0.15 7.24±1.36 0.08±0.02 NY/T525-2021限量标准 Limit standard ≤15 ≤3 ≤50 ≤150 ≤2 表 8 是否吸附沼液和不同菌源与有机肥重金属含量的方差分析
Table 8. Analysis of variance on biogas slurry adsorption and induced bacteria affecting heavy metals in organic fertilizer
指标 Index 砷 As 镉 Cd 铅 Pb 铬 Cr 汞 Hg 凤眼莲基质A 0.213 25.166** 70.531*** 6.700* 3.361 菌源B 1.798 2.198 0.006 2.948 0.250 凤眼莲基质A×菌源B 0.812 0.338 1.133 0.218 0.694 -
[1] 张志勇, 严少华, 徐寸发, 等. 水葫芦修复污染水体的功能及其在工程应用中所面临的挑战 [J]. 生态环境学报, 2017, 26(9):1612−1618.ZHANG Z Y, YAN S H, XU C F, et al. The functions of water hyacinth[Eichhornia crassipes(mart) solms] in remediation of polluted waters and challenges in engineering application [J]. Ecology and Environmental Sciences, 2017, 26(9): 1612−1618.(in Chinese) [2] 许国晶, 段登选, 杜兴华, 等. 养殖池塘利用水葫芦与EM菌协同净化水环境的研究 [J]. 中国农学通报, 2014, 30(26):40−46. doi: 10.11924/j.issn.1000-6850.2014-0240XU G J, DUAN D X, DU X H, et al. Study of combined purification effect on culturing wastewater by Eichhornia crassipes and EM [J]. Chinese Agricultural Science Bulletin, 2014, 30(26): 40−46.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-0240 [3] 刘波, 刘筱, 韩宇捷, 等. 规模化养猪场典型沼气工程各排放节点氨排放特征研究 [J]. 农业工程学报, 2018, 34(23):179−185. doi: 10.11975/j.issn.1002-6819.2018.23.022LIU B, LIU X, HAN Y J, et al. Study on emission characteristics of ammonia from anaerobic digesters in industrial pig farm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 179−185.(in Chinese) doi: 10.11975/j.issn.1002-6819.2018.23.022 [4] 倪中应, 章明奎. 沼液中氮磷钾化学形态组成及其生物有效性评价 [J]. 土壤通报, 2017, 48(5):1114−1118.NI Z Y, ZHANG M K. Chemical compositions of nitrogen, Phosphorus, and potassium in biogas slurry and their bio-availability [J]. Chinese Journal of Soil Science, 2017, 48(5): 1114−1118.(in Chinese) [5] 张心良. 猪场污水还田与化肥配施对农田水土环境和作物产量的影响 [J]. 生态与农村环境学报, 2016, 32(4):645−650. doi: 10.11934/j.issn.1673-4831.2016.04.020ZHANG X L. Effects of application of swine farm wastewater coupled with chemical fertilizer on water, soil and crop [J]. Journal of Ecology and Rural Environment, 2016, 32(4): 645−650.(in Chinese) doi: 10.11934/j.issn.1673-4831.2016.04.020 [6] 郑学博, 樊剑波, 周静. 沼液还田对旱地红壤有机质及团聚体特征的影响 [J]. 中国农业科学, 2015, 48(16):3201−3210. doi: 10.3864/j.issn.0578-1752.2015.16.010ZHENG X B, FAN J B, ZHOU J. Effects of biogas slurry on soil organic matter and characteristics of soil aggregates in upland red earth [J]. Scientia Agricultura Sinica, 2015, 48(16): 3201−3210.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.16.010 [7] 史佳峰, 朱慧杰. 3种湿地植物对养猪废水的净化效果 [J]. 安徽农业科学, 2017, 45(24):65−66,78. doi: 10.3969/j.issn.0517-6611.2017.24.022SHI J F, ZHU H J. Purification effects of 3 wetland plants on pig wastewater [J]. Journal of Anhui Agricultural Sciences, 2017, 45(24): 65−66,78.(in Chinese) doi: 10.3969/j.issn.0517-6611.2017.24.022 [8] 刘作云, 彭忆兰, 付美云. 3种常见水生植物对养殖废水中化学需氧量的去除效果 [J]. 南方农业学报, 2016, 47(6):911−915. doi: 10.3969/j:issn.2095-1191.2016.06.911LIU Z Y, PENG Y L, FU M Y. Removal effects of three aquatic plants on chemical oxygen demand (CODcr) in livestock breeding wastewater [J]. Journal of Southern Agriculture, 2016, 47(6): 911−915.(in Chinese) doi: 10.3969/j:issn.2095-1191.2016.06.911 [9] 吴婷婷, 刘国锋, 韩士群, 等. 蓝藻水华聚集对水葫芦生理生态的影响 [J]. 环境科学, 2015, 36(1):114−120.WU T T, LIU G F, HAN S Q, et al. Impacts of algal blooms accumulation on physiological ecology of water hyacinth [J]. Environmental Science, 2015, 36(1): 114−120.(in Chinese) [10] MADIKIZELA L M. Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes) [J]. Journal of Environmental Management, 2021, 295: 113153. doi: 10.1016/j.jenvman.2021.113153 [11] KONG L J, HU X L, XIE Z Y, et al. Accelerated phosphorus recovery from aqueous solution onto decorated sewage sludge carbon [J]. Scientific Reports, 2018, 8: 13421. doi: 10.1038/s41598-018-31750-6 [12] MANNA S, ROY D, SAHA P, et al. Defluoridation of aqueous solution using alkali-steam treated water hyacinth and elephant grass [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 215−222. doi: 10.1016/j.jtice.2014.12.003 [13] ELFEKY S A, IMAM H, ALSHERBINI A A. Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film [J]. Environmental Science and Pollution Research, 2013, 20(11): 8220−8226. doi: 10.1007/s11356-013-1797-4 [14] GUERRERO-CORONILLA I, MORALES-BARRERA L, CRISTIANI-URBINA E. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves [J]. Journal of Environmental Management, 2015, 152: 99−108. doi: 10.1016/j.jenvman.2015.01.026 [15] UGYA A Y, IMAM T S, HASSAN A S. The efficiency of eicchornia crassipes in the phytoremediation of waste water from kaduna refinery and petrochemical company [J]. Journal of Pharmacy and Biological Sciences, 2015, 10(1): 76−80. [16] CHENG J, XIE B F, ZHOU J H, et al. Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation [J]. International Journal of Hydrogen Energy, 2010, 35(7): 3029−3035. doi: 10.1016/j.ijhydene.2009.07.012 [17] EL-KHAIARY M I, GAD F A, MAHMOUD M S, et al. Adsorption of methylene blue from aqueous solution by chemically treated water hyacinth [J]. Toxicological & Environmental Chemistry, 2009, 91(6): 1079−1094. [18] 田雪, 王一佩, 杨钙仁, 等. 吸附质共存与浓度变化对植物基质N、P吸附的影响 [J]. 农业现代化研究, 2017, 38(3):544−552. doi: 10.13872/j.1000-0275.2017.0037TIAN X, WANG Y P, YANG G R, et al. Effects of adsorbate concentration and coexisting on adsorption of nitrogen and phosphorus by plant substrates [J]. Research of Agricultural Modernization, 2017, 38(3): 544−552.(in Chinese) doi: 10.13872/j.1000-0275.2017.0037 [19] 田雪. 基于植物基质的水中高氮高磷吸附和资源化利用[D]. 南宁: 广西大学, 2017.TIAN X. Adsorption and resource utilization of high nitrogen and phosphorus in water based on plant substrate[D]. Nanning: Guangxi University, 2017. (in Chinese) [20] AL RMALLI S W, HARRINGTON C F, AYUB M, et al. A biomaterial based approach for arsenic removal from water [J]. Journal of Environmental Monitoring, 2005, 7(4): 279−282. doi: 10.1039/b500932d [21] 中华人民共和国环境保护部. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012. [22] 中华人民共和国环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2010. [23] 国家环境保护总局. 水质 总磷的测定 钼酸铵分光光度法: GB 11893—1989[S]. 北京: 中国标准出版社, 1989. [24] 中华人民共和国环境保护部. 水质 化学需氧量的测定 重铬酸盐法: HJ 828—2017[S]. 北京: 中国环境出版社, 2017. [25] 中华人民共和国农业农村部. 有机肥料: NY/T 525—2021[S]. 北京: 中国农业出版社, 2021. [26] 国家市场监督管理总局, 国家标准化管理委员会. 肥料中砷、镉、铬、铅、汞含量的测定: GB/T 23349—2020[S]. 北京: 中国标准出版社, 2020. [27] MITRA T, SINGHA B, BAR N, et al. Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling [J]. Journal of Hazardous Materials, 2014, 273: 94−103. doi: 10.1016/j.jhazmat.2014.03.025 [28] EMAM A A, ABO FARAHA S A, KAMAL F H, et al. Modification and characterization of Nano cellulose crystalline from Eichhornia crassipes using citric acid: An adsorption study [J]. Carbohydrate Polymers, 2020, 240: 116202. doi: 10.1016/j.carbpol.2020.116202 [29] MISHRA S, MAITI A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review [J]. Environmental Science and Pollution Research, 2017, 24(9): 7921−7937. doi: 10.1007/s11356-016-8357-7 [30] LUO D B, MA T. Fabrication of microporous PVDF particles by an emulsion method and control of pore structure [J]. Advanced Materials Research, 2012, 560/561: 751−755. doi: 10.4028/www.scientific.net/AMR.560-561.751 [31] KRYUCHKOV Y N. Estimation of corundum particles size and shape effect on the capillary radius of porous ceramic [J]. Glass and Ceramics, 2020, 77(1): 22−25. [32] JIANG T, SCHUCHARDT F, LI G X, et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system [J]. Chemosphere, 2013, 90(4): 1545−1551. doi: 10.1016/j.chemosphere.2012.08.056 [33] 侯超, 李永彬, 徐鹏翔, 等. 筒仓式堆肥反应器不同通风量对堆肥效果的影响 [J]. 环境工程学报, 2017, 11(8):4737−4744. doi: 10.12030/j.cjee.201606062HOU C, LI Y B, XU P X, et al. Composting effects of using pilot silo reactor by different ventilation rate [J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4737−4744.(in Chinese) doi: 10.12030/j.cjee.201606062 [34] 邓雯文, 陈姝娟, 何雪萍, 等. 鸡粪-堆肥中重金属残留、抗生素耐药基因及细菌群落变化研究 [J]. 农业环境科学学报, 2019, 38(2):439−450. doi: 10.11654/jaes.2018-0716DENG W W, CHEN S J, HE X P, et al. Dynamics of heavy metal residues, antibiotic resistance genes, and bacterial communities during chicken manure composting [J]. Journal of Agro-Environment Science, 2019, 38(2): 439−450.(in Chinese) doi: 10.11654/jaes.2018-0716 [35] YIN K, WANG Q N, LV M, et al. Microorganism remediation strategies towards heavy metals [J]. Chemical Engineering Journal, 2019, 360: 1553−1563. doi: 10.1016/j.cej.2018.10.226 [36] 梁仁礼, 张衍林, 田茂胜, 等. 规模化猪场废水厌氧处理工艺及现存问题分析 [J]. 可再生能源, 2006, 24(5):79−82. doi: 10.3969/j.issn.1671-5292.2006.05.025LIANG R L, ZHANG Y L, TIAN M S, et al. Anaerobic technology of wastewater treatment for large scale swine farm and the problems [J]. Renewable Energy, 2006, 24(5): 79−82.(in Chinese) doi: 10.3969/j.issn.1671-5292.2006.05.025 [37] 李丹阳, 李恕艳, 李国学, 等. 添加剂对猪粪秸秆堆肥的氮素损失控制效果 [J]. 农业工程学报, 2016, 32(S2):260−267. doi: 10.11975/j.issn.1002-6819.2016.z2.036LI D Y, LI S Y, LI G X, et al. Effects of additive on nitrogen loss during composting of pig manure and corn straw [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 260−267.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.z2.036 [38] 孙文彬. 生物质炭对城市污泥好氧堆肥过程中碳素转化及堆肥品质的影响[D]. 重庆: 西南大学, 2013.SUN W B. Effect of biochar on transformation of organic matter during sewage sludge composting and quality of compost[D]. Chongqing: Southwest University, 2013. (in Chinese) [39] HAZARIKA J, GHOSH U, KALAMDHAD A S, et al. Transformation of elemental toxic metals into immobile fractions in paper mill sludge through rotary drum composting [J]. Ecological Engineering, 2017, 101: 185−192. doi: 10.1016/j.ecoleng.2017.02.005 [40] 黄绍文, 唐继伟, 李春花. 我国商品有机肥和有机废弃物中重金属、养分和盐分状况 [J]. 植物营养与肥料学报, 2017, 23(1):162−173. doi: 10.11674/zwyf.16191HUANG S W, TANG J W, LI C H. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 162−173.(in Chinese) doi: 10.11674/zwyf.16191 [41] 梁帅, 颜冬云, 徐绍辉. 重金属废水的生物治理技术研究进展 [J]. 环境科学与技术, 2009, 32(11):108−114. doi: 10.3969/j.issn.1003-6504.2009.11.026LIANG S, YAN D Y, XU S H. Review on microbiological and botanical treatment technology for heavy metal wastewater [J]. Environmental Science & Technology, 2009, 32(11): 108−114.(in Chinese) doi: 10.3969/j.issn.1003-6504.2009.11.026 [42] PURANIK P R, PAKNIKAR K M. Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass [J]. Journal of Biotechnology, 1997, 55(2): 113−124. doi: 10.1016/S0168-1656(97)00067-9