Identification and Herbicidal Efficacies of Three Yeast Strains
-
摘要:
目的 探究分离菌株6-3、12-6和16-8对青海农田优势杂草猪殃殃、密花香薷、藜的除草活性以及对作物的安全性,为微生物除草剂的开发提供理论依据。 方法 采用温室盆栽法进行菌株的除草活性及作物的安全性测定;通过形态学观察结合ITS及26S rDNA基因序列对菌株进行分子生物学鉴定。 结果 接种菌株16-8、12-6和6-3发酵液7 d后对猪殃殃的伤害率为90.17%、87.50%和0%,鲜重抑制率为88.63%、75.80%和9.41%;对密花香薷的伤害率为66.67%、75.00%和36.67%,鲜重抑制率为56.90%、62.72%和46.29%;对藜的伤害率为95.00%、37.50%和25.00%,鲜重抑制率为78.77%、43.25%和43.46%。作物安全性试验结果表明,3株生防菌发酵液对供试的燕麦、蚕豆、青稞、小麦、油菜、豌豆和马铃薯等7种作物表现安全。经鉴定16-8菌株为库德里阿兹威毕赤酵母菌,12-6为马克斯克鲁维酵母菌、6-3为季也蒙迈耶氏酵母菌。 结论 16-8菌株和12-6菌株对不同优势杂草表现出较好的抑制效果,有开发为微生物除草剂的潜力,可开展杀草谱评价和微生物除草剂研发相关研究。 Abstract:Objective Three yeast strains with herbicidal activity were isolated for the determinations of their efficacy on weeds and application safety on crops. Method In pot culture, the herbicidal efficacies of Strains 6-3, 12-6, and 16-8 on Galium spurium, Elsholtzia densa, and Chenopodium album, the weeds of major concern in Qinghai Province, were examined. A test on the application safety on crops was conducted in a greenhouse. In addition to morphological characteristics, ITS and 26S rDNA gene sequencing were performed to biologically identify the 3 strains. Results Seven days after treatment with the yeast fermentation broths of 16-8, 12-6, and 6-3, the G. spurium plants sustained the injury rates of 90.17%, 87.50%, and 0%, respectively, with the fresh weight losses of 88.63%, 75.80%, and 9.41%, respectively; E. densa showed the rates of 66.67%, 75.00%, and 36.67%, respectively, with the weight losses of 56.90%, 62.72%, and 46.29%, respectively; and C. album displayed the injury rates of 95.00%, 37.50%, and 25.00%, respectively, with the weight losses of 78.77%, 43.25%, and 43.46%, respectively. The treatments on oat, broad beans, barley, wheat, rapeseeds, peas, and potatoes were shown to be safe for food consumption and crop cultivation. Strain 16-8 was confirmed to be Pichia kudriavzevii, 12-6 to be Kluyveromyces marxianus, and 6-3 to be Meyerozyma guilliermondii. Conclusion Of the 3 yeast strains, 16-8 and 12-6 were strong in inhibiting the growth of the weeds of major concern in the province and could be developed as natural herbicides. The results might also lead to a broadened study on microbe-origin herbicides and related research. -
Key words:
- Weeds /
- biocontrol strains /
- strains identification /
- herbicidal activity /
- crop safety
-
图 2 除草剂和16-8菌株混用后7 d的除草效果
D:氯氟吡氧乙酸推荐剂量;E:氯氟吡氧乙酸50%推荐剂量;F:氯氟吡氧乙酸25%推荐剂量;G:氯氟吡氧乙酸推荐剂量+16-8菌株发酵液;H:氯氟吡氧乙酸50%推荐剂量+16-8菌株发酵液;I:氯氟吡氧乙酸25%推荐剂量+16-8菌株发酵液J:16-8菌株发酵液;K:清水对照。
Figure 2. Efficacy of herbicide, 16-8 or herbicide+16-8 on weeds 7 d after treatment
D: fluroxypyr at recommended dose; E: fluroxypyr at half recommended dose; F: fluroxypyr at 25% of recommended dose; G: recommended dose+16-8 fermentation broth; H: 50% of recommended fluroxypyr dose+16-8 fermentation broth; I: 25% of recommended fluroxypyr dose+16-8 fermentation broth J: 16-8 fermentation broth alone; K: water control.
图 3 分离菌株菌落形态及其孢子显微观察
L:16-8菌落形态(左,正面;右,反面);M:12-6菌落形态(左,正面;右,反面);N:6-3菌落形态(左,正面;右,反面);O:16-8孢子形态;P:12-6孢子形态;Q:6-3孢子形态。
Figure 3. Colony morphology and microscopic images of 6-3, 12-6, and 16-8 spores
L:front-view of 16-8 colony (left); back-view of 16-8 colony (right); M:front-view of 12-6 colony (left); back-view of 12-6 colony (right); N: front-view of 6-3 colony (left); back-view of 6-3 colony (right); O: morphology of 16-8 spores; P: morphology of 12-6 spores; Q: morphology of 6-3 spores.
表 1 3株酵母菌菌株发酵液对杂草幼苗生长的抑制作用
Table 1. Inhibition effect of yeast fermentation broths on growth of weed seedlings
菌株
strain猪殃殃
G. aparine.密花香薷
E. densa藜
C. album伤害率
Injury rate /%鲜重
Fresh weight /g鲜重抑制率
Fresh weight
inhibition rate /%伤害率
Injury rate/%鲜重
Fresh weight/g鲜重抑制率
Fresh weight
inhibition rate/%伤害率
Injury rate%鲜重
Fresh weight/g鲜重抑制率
Fresh weight
inhibition rate/%16-8 90.17 1.5±0.22 88.63 a 66.67 9.7±0.15 56.90 b 95.00 1.6±0.21 78.77 a 12-6 87.50 3.2±0.12 75.80 b 75.00 8.4±0.24 62.72 a 43.33 4.1±0.11 43.25 b 6-3 0 11.9±0.14 9.41 c 36.67 12.1±0.31 46.29 c 41.67 4.1±0.12 43.46 b CK 0 13.1±0.23 0 d 0 22.6±0.15 0 d 0 7.3±0.15 0 c 同列数据后不同小写字母表示差异达0.05显著水平(P<0.05),表3~4同。
Data with different lowercase letters on same column indicate significant different at P<0.05, Same for table3-4.表 2 3株酵母菌株发酵液对不同作物的安全性比较
Table 2. Effect of yeast fermentation broths on crop safety
菌株
strain燕麦
Avena sativa蚕豆
Vicia faba.豌豆
Pisum sativum小麦
Triticum aestivum青稞
Hordeum vulgare油菜
Brassica napus马铃薯
Solanum tuberosum16-8 NS LS LS NS NS NS NS 6-3 NS NS NS NS NS NS NS 12-6 NS NS NS NS NS NS NS CK NS NS NS NS NS NS NS NS表示无症状;LS表示有轻微反应;MS表示中等感病;SS表示严重感病。
NS: asymptomatic; LS: mild reaction; MS: moderately susceptible; SS: severely susceptible.表 3 3株酵母菌株发酵液对不同作物抑制作用
Table 3. Inhibition effect of yeast fermentation broths on crops
(单位:%) 菌株
strain燕麦
A. sativa蚕豆
V. faba豌豆
P. sativum小麦
T. aestivum株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate6-3 0.25±1.35 b 1.08±0.46 b 12.73±0.88a 14.73±2.43 a 10.69±0.13 a 22.61±0.43 a 0.17±0.31 c 3.20±0.17 a 12-6 0.53±1.13 a 3.71±0.21 a 0.03±0.39c 2.34±0.37 c 0.05±0.29 b 0.44±0.40 b 1.26±0.57 a 0.58±0.31c 16-8 0.02±0.55 c 0.04±0.16 c 1.54±0.67b 5.71±1.66 b 0.16±0.67b 9.46±0.71c 1.16±0.17 ab 2.15±0.25 b 菌株
strain青稞
H. vulgare油菜
B. napus马铃薯
S. tuberosum株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate株高抑制率
Inhibition rate of
plant height鲜重抑制率
Fresh weight
inhibition rate6-3 0.12±0.52 a 3.51±0.37 a 8.26±0.07 a 0.01±0.01 a 0.20±0.55c 5.66±5.53 a 12-6 0.01±0.17b 1.56±0.35 b 0.13±0.15 c 0.00±0.06 a 0.49±0.14 b 1.58±13.57 c 16-8 0.07±0.41 c 0.21±0.39 c 2.62±0.33 b 0.01±0.04 a 0.68±0.33 a 2.74±6.76 b 表 4 氯氟吡氧乙酸与16-8菌株发酵液混用对猪殃殃的防效
Table 4. Efficacy of 16-8 fermentation broth per se or in combination with fluroxypyr on controlling G. aparine
处理
Treatment剂量Dosage/
(mL·hm−2+mL·m-2)处理后7 d
After treatment 7 d处理后14 d
After treatment 14 d鲜重
Fresh weight/g鲜重抑制率
Fresh weight
inhibition rate/%鲜重
Fresh weight/g鲜重抑制率
Fresh weight
inhibition rate/%氯氟吡氧乙酸乳油(推荐剂量)
Fluroxypyr EC at the recommended dose750+0 2.45±0.13 62.60 b 1.57±0.04 79.42 b 氯氟吡氧乙酸乳油(50%推荐剂量)
Fluroxypyr EC at 50 % of the recommended dose375+0 3.02±0.37 53.89 bc 2.27±0.19 70.25 c 氯氟吡氧乙酸(25%推荐剂量)
Fluroxypyr EC at 25 % of the recommended dose187.5+0 3.55±0.26 45.80 c 2.84±0.12 62.78 d 氯氟吡氧乙酸乳油(推荐剂量)+16-8发酵液
Fluroxypyr EC at the recommended
dose +16-8 strain fermentation broth750+250 0.78±0.10 88.09 a 0.51±0.07 93.32 a 氯氟吡氧乙酸+16-8发酵液
Fluroxypyr EC at 50 % of the recommended
dose +16-8 strain fermentation broth375+250 0.94±0.01 85.65 a 0.64±0.03 91.61 a 氯氟吡氧乙酸+16-8发酵液
Fluroxypyr EC at 25 % of the recommended
dose +16-8 strain fermentation broth187.5+250 1.11±0.25 83.05 a 0.87±0.20 88.60 a 16-8发酵液16-8
strain fermentation broth0+250 0.97±0.13 85.19 a 0.79±0.11 89.65 a 清水对照
Water control0+0 6.55±0.39 0 d 7.63±0.25 0 e -
[1] 魏有海, 郭青云, 郭良芝, 等. 青海保护性耕作农田杂草群落组成及生物多样性 [J]. 干旱地区农业研究, 2013, 31(1):219−225. doi: 10.3969/j.issn.1000-7601.2013.01.040WEI Y H, GUO Q Y, GUO L Z, et al. The community composition and biodiversity of weeds in conservation tillage system in Qinghai Province [J]. Agricultural Research in the Arid Areas, 2013, 31(1): 219−225.(in Chinese) doi: 10.3969/j.issn.1000-7601.2013.01.040 [2] 侯璐, 魏有海, 郭良芝, 等. 青海省东部地区马铃薯田培土前后杂草群落组成的比较分析 [J]. 青海大学学报, 2021, 39(5):23−28.HOU L, WEI Y H, GUO L Z, et al. Comparative analysis of weed community composition before and after soil cultivation in Solanum tuberosum L. field in eastern Qinghai [J]. Journal of Qinghai University, 2021, 39(5): 23−28.(in Chinese) [3] 翁华, 魏有海, 郭良芝, 等. 青海省春麦田杂草种类组成及群落特征 [J]. 作物杂志, 2013(3):116−120. doi: 10.16035/j.issn.1001-7283.2013.03.005WENG H, WEI Y H, GUO L Z, et al. Species composition and characteriziation of weed community in spring wheat field in Qinghai [J]. Crops, 2013(3): 116−120.(in Chinese) doi: 10.16035/j.issn.1001-7283.2013.03.005 [4] 崔海兰, 王藏月, 徐林林, 等. 猪殃殃对AHAS抑制剂靶标抗性的快速分子检测 [J]. 植物保护学报, 2016, 43(6):1049−1054.CUI H L, WANG C Y, XU L L, et al. Rapid molecular detection of the resistance of Galium aparine var. tenerum to AHAS inhibitors [J]. Journal of Plant Protection, 2016, 43(6): 1049−1054.(in Chinese) [5] 李香菊. 近年我国农田杂草防控中的突出问题与治理对策 [J]. 植物保护, 2018, 44(5):77−84. doi: 10.16688/j.zwbh.2018322LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years [J]. Plant Protection, 2018, 44(5): 77−84.(in Chinese) doi: 10.16688/j.zwbh.2018322 [6] HERSHENHORN J, CASELLA F, VURRO M. Weed biocontrol with fungi: Past, present and future [J]. Biocontrol Science and Technology, 2016, 26(10): 1313−1328. doi: 10.1080/09583157.2016.1209161 [7] 陈世国, 强胜. 生物除草剂研究与开发的现状及未来的发展趋势 [J]. 中国生物防治学报, 2015, 31(5):770−779.CHEN S G, QIANG S. The status and future directions of bioherbicide study and development [J]. Chinese Journal of Biological Control, 2015, 31(5): 770−779.(in Chinese) [8] 张亚鑫, 肖婉, 张峥, 等. 稻田稗属杂草致病菌的分离与鉴定 [J]. 中国生物防治学报, 2021, 37(6):1276−1287.ZHANG Y X, XIAO W, ZHANG Z, et al. Isolation and identification of plant pathogens of barnyard grass in the paddy fields [J]. Chinese Journal of Biological Control, 2021, 37(6): 1276−1287.(in Chinese) [9] 邹德勇, 杨智越, 杜春梅. Phaeosphaeria sp. HD-06菌株对马唐的致病性分析及初步鉴定 [J]. 植物保护, 2020, 46(4):98−104.ZOU D Y, YANG Z Y, DU C M. Pathogenicity of Phaeosphaeria sp. HD-06 against Digitaria sanguinalis and the preliminary identification of the strain [J]. Plant Protection, 2020, 46(4): 98−104.(in Chinese) [10] 李健, 李美, 高兴祥, 等. 菟丝子生防菌“鲁保一号”生物学特性及T-DNA插入突变体库的构建 [J]. 草业学报, 2017, 26(1):142−148. doi: 10.11686/cyxb2016238LI J, LI M, GAO X X, et al. Biological characteristics of Lubao No. 1 biological control agent(Colletotrichum gloeosporioides)and construction of a T-DNA insertional mutant library [J]. Acta Prataculturae Sinica, 2017, 26(1): 142−148.(in Chinese) doi: 10.11686/cyxb2016238 [11] 朱海霞, 马永强, 郭青云. 层出镰孢菌GD-5固态发酵培养条件及对藜和密花香薷的除草活性 [J]. 植物保护学报, 2018, 45(5):1154−1160. doi: 10.13802/j.cnki.zwbhxb.2018.2018081ZHU H X, MA Y Q, GUO Q Y. Solid culture conditions of Fusarium proliferatum GD-5 and its herbicidal activity to weeds Chenopodium album and Elsholtzia densa [J]. Journal of Plant Protection, 2018, 45(5): 1154−1160.(in Chinese) doi: 10.13802/j.cnki.zwbhxb.2018.2018081 [12] 朱海霞, 马永强, 郭青云. 极细链格孢菌剂的初步研制及其除草作用研究 [J]. 植物保护, 2018, 44(5):212−216,230.ZHU H X, MA Y Q, GUO Q Y. Development of the biocontrol agents of Alternaria tenuissima HZ-1 and its herbicidal activity [J]. Plant Protection, 2018, 44(5): 212−216,230.(in Chinese) [13] 程亮. 生防菌粗毒素对猪殃殃防御酶及叶片细胞膜透性的影响 [J]. 现代农业科技, 2015(11):136−138. doi: 10.3969/j.issn.1007-5739.2015.11.083CHENG L. Effect of crude toxins from biocontrol fungi on defensive enzymes activity and membrane permeability of Galium aparine L [J]. Modern Agricultural Science and Technology, 2015(11): 136−138.(in Chinese) doi: 10.3969/j.issn.1007-5739.2015.11.083 [14] 王德培, 胡阳, 焦富. 库德里阿兹威氏毕赤酵母在发酵工业中的研究进展 [J]. 酿酒科技, 2021(6):95−101. doi: 10.13746/j.njkj.2021043WANG D P, HU Y, JIAO F. Research progress in the application of Pichia kudriavzevii in industrial fermentation [J]. Liquor-Making Science & Technology, 2021(6): 95−101.(in Chinese) doi: 10.13746/j.njkj.2021043 [15] 岳寿松, 边斐, 张燕, 等. 马克斯克鲁维酵母菌的分离鉴定与所产乳糖酶酶学性能研究 [J]. 山东农业科学, 2018, 50(11):66−70,101.YUE S S, BIAN F, ZHANG Y, et al. Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase [J]. Shandong Agricultural Sciences, 2018, 50(11): 66−70,101.(in Chinese) [16] 张颖, 刘同杰, 公丕民, 等. 抗真菌乳酸菌的筛选及其在酸奶发酵中的应用 [J]. 食品与发酵工业, 2021, 47(19):84−89.ZHANG Y, LIU T J, GONG P M, et al. Screening and application of antifungal lactic acid bacteria in yogurt fermentation [J]. Food and Fermentation Industries, 2021, 47(19): 84−89.(in Chinese) [17] 宋玉婕, 杨从军. 塔宾曲霉L-27菌株的分离鉴定及其发酵液除草潜力 [J]. 微生物学通报, 2021, 48(10):3682−3689.SONG Y J, YANG C J. Isolation and identification of Aspergillus tubingensis L-27 strain and herbicidal potential of its fermentation broth [J]. Microbiology China, 2021, 48(10): 3682−3689.(in Chinese) [18] 朱云枝, 强胜. 真菌菌株QZ-2000对马唐(Digitaria sanguinalis)致病力的影响因子 [J]. 南京农业大学学报, 2004, 27(2):47−50.ZHU Y Z, QIANG S. Influence of some factors on pathogenicity of strain QZ-2000 to Digitaria sanguinalis [J]. Journal of Nanjing Agricultural University, 2004, 27(2): 47−50.(in Chinese) [19] 程亮, 郭青云. 内生真菌HL-1的除草活性及对作物的安全性 [J]. 江苏农业学报, 2015, 31(5):1012−1016. doi: 10.3969/j.issn.1000-4440.2015.05.011CHENG L, GUO Q Y. Herbicidal activity of fungal endophyte HL-1 against weeds and its safety to crops [J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(5): 1012−1016.(in Chinese) doi: 10.3969/j.issn.1000-4440.2015.05.011 [20] 张红梅, 陈玉湘, 徐士超, 等. 生物源除草活性物质开发及应用研究进展 [J]. 农药学学报, 2021, 23(6):1031−1045.ZHANG H M, CHEN Y X, XU S C, et al. Research progress on development and application of bio-sourced herbicidal active substances [J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1031−1045.(in Chinese) [21] 姜述君, 强胜, 朱云枝. 画眉草弯孢霉菌除草活性化合物的分离鉴定及其生物活性测定 [J]. 植物保护学报, 2006, 33(3):313−318. doi: 10.3321/j.issn:0577-7518.2006.03.018JIANG S J, QIANG S, ZHU Y Z. Isolation, purification, identification, and bioassay of helminthosporin with herbicidal activity from Curvularia eragrostidis [J]. Journal of Plant Protection, 2006, 33(3): 313−318.(in Chinese) doi: 10.3321/j.issn:0577-7518.2006.03.018 [22] 姜述君, 范文艳, 鞠世杰, 等. 狭卵链格孢菌株AAEC05-3及其毒素对稗草的致病性 [J]. 植物保护学报, 2007, 34(3):283−288. doi: 10.3321/j.issn:0577-7518.2007.03.012JIANG S J, FAN W Y, JU S J, et al. The pathogenicity of strain AAEC05-3 and its phytotoxin to Echinochloa crus-galli [J]. Journal of Plant Protection, 2007, 34(3): 283−288.(in Chinese) doi: 10.3321/j.issn:0577-7518.2007.03.012 [23] 姜述君, 强胜. 马唐生防菌画眉草弯孢霉毒素α, -βdehydro-curvularin对马唐叶绿体功能的影响 [J]. 植物病理学报, 2005, 35(4):312−316. doi: 10.3321/j.issn:0412-0914.2005.04.005JIANG S J, QIANG S. The effect of α, β-dehydrocurvularin, a toxin from a bioherbicidal candidate Curvularia eragrostidis, on chloroplast function of Digitaria sanguinalis [J]. Acta Phytopathologica Sinica, 2005, 35(4): 312−316.(in Chinese) doi: 10.3321/j.issn:0412-0914.2005.04.005 [24] CHEN J, WEI J, GAO J M, et al. Allelopathic inhibitory effects of Penicillium griseofulvum produced patulin on the seed germination of Orobanche cumana Wallr. and Phelipanche aegyptiaca Pers [J]. Allelopathy Journal, 2017, 41(1): 65−80. doi: 10.26651/2017-41-1-1084 [25] 顾琼楠, 欧翔, 褚世海, 等. 牛筋草生防菌NJC-16的分离鉴定及生物学特性研究 [J]. 中国生物防治学报, 2021, 37(4):817−825. doi: 10.16409/j.cnki.2095-039x.2021.04.009GU Q N, OU X, CHU S H, et al. Isolation, identification, and biological characteristics of the biocontrol fungi NJC-16 for Eleusine indica [J]. Chinese Journal of Biological Control, 2021, 37(4): 817−825.(in Chinese) doi: 10.16409/j.cnki.2095-039x.2021.04.009 [26] TAN M, DING R Y, HUANG Q, et al. Evaluation of Bipolaris panici-miliacei as a bioherbicide against Microstegium vimineum [J]. Biocontrol Science and Technology, 2022, 32(2): 178−195. doi: 10.1080/09583157.2021.1977240 [27] WEAVER M A, JIN X, HOAGLAND R E, et al. Improved bioherbicidal efficacy by Myrothecium verrucaria via spray adjuvants or herbicide mixtures [J]. Biological Control, 2009, 50(2): 150−156. doi: 10.1016/j.biocontrol.2009.03.007 [28] SONG T, CHU M G, ZHANG J P, et al. Transcriptome analysis identified the mechanism of synergy between sethoxydim herbicide and a mycoherbicide on green foxtail [J]. Scientific Reports, 2020, 10: 21690. doi: 10.1038/s41598-020-78290-6 [29] HEINY D K. Field survival of Phoma proboscis and synergism with herbicides for control of field bindweed [J]. Plant Disease, 1994, 78(12): 1156. doi: 10.1094/PD-78-1156 [30] WYMORE L A, WATSON A K, GOTLIEB A R. Interaction Between Colletotrichum coccodes and thidiazuron for control of velvetleaf (Abutilon theophrasti) [J]. Weed Science, 1987, 35(3): 377−383. doi: 10.1017/S0043174500053856 [31] GRANT N T, PRUSINKIEWICZ E, MORTENSEN K, et al. Herbicide interactions with Colletotrichum gloeosporioides f. sp. malvaea bioherbicide for round-leaved mallow (Malva pusilla) control [J]. Weed Technology, 1990, 4(4): 716−723. doi: 10.1017/S0890037X00026282 [32] RAMYA P, GOMATHI V, DEVI R P, et al. Pichia kudriavzevii-a potential soil yeast candidate for improving soil physical, chemical and biological properties [J]. Archives of Microbiology, 2021, 203(7): 4619−4628. doi: 10.1007/s00203-021-02447-8 [33] 罗建军, 耿鹏, 胡美英, 等. 1株拮抗酵母菌对柑橘绿霉病菌的抑制作用 [J]. 华中农业大学学报, 2013, 32(1):54−58. doi: 10.3969/j.issn.1000-2421.2013.01.010LUO J J, GENG P, HU M Y, et al. Inhibitive activity of Kluyveromyces marxianus on Penicillium digitatum sacc [J]. Journal of Huazhong Agricultural University, 2013, 32(1): 54−58.(in Chinese) doi: 10.3969/j.issn.1000-2421.2013.01.010 [34] AL-RAHBI B A A, AL-SADI A M, AL-MAHMOOLI I H, et al. Meyerozyma guilliermondii SQUCC-33Y suppresses postharvest fruit rot of strawberry caused by Alternaria alternata [J]. Australasian Plant Pathology, 2021, 50(3): 349−352. doi: 10.1007/s13313-021-00779-z