A study on the antimicrobal activity of 7 strains Sarcandra glabra endophytes including Lasiodiplodia pseudotheobromae.
-
摘要:
目的 从7种草珊瑚内生真菌中筛选出具有广谱抑菌活性的菌株。 方法 采用菌丝生长速率法和最低抑制浓度法对7种草珊瑚内生真菌的发酵产物进行抑菌活性测定。 结果 7株草珊瑚内生真菌中,J-10较其余菌株不同溶剂萃取层对供试致病菌株表现出广谱的抑菌活性,其甲醇和乙酸乙酯萃取物在质量浓度为2 mg·mL−1时对罗汉果根腐病菌和甘蔗凤梨病菌抑菌率介于84.84%~88.51%。J-10为拟可可毛球二孢菌,其发酵产物的乙酸乙酯萃取物抑菌活性最为显著,对7种病原真菌的EC50值介于0.1995~1.1722 mg·mL−1,其中对玉米大斑病菌的毒力最强,对罗汉果根腐病菌的毒力最弱;J-10菌丝体甲醇提取物对7种病原真菌的EC50值介于 0.1255~9.4687 mg·mL−1,对茶轮斑病菌的毒力最强,对罗汉果根腐病菌的毒力最弱。同时,其乙酸乙酯萃取物对普通变形杆菌、伤寒沙门氏菌、罗汉果青枯菌、大肠杆菌、溶壁微球菌、蜡样芽孢杆菌、巨大芽孢杆菌、枯草芽孢杆菌、炭疽杆菌、藤黄微球菌、金黄色葡萄球菌11种致病细菌的抑菌效果优于甲醇和正丁醇萃取物,经24 h处理后的MIC介于0.125~2.5 mg·mL−1。 结论 拟可可毛球二孢菌具有抑菌广谱性,活性物质主要集中于乙酸乙酯萃取物中,属于中等极性。 Abstract:Object Endophytic Sarcandra glabra fungi exhibiting an antimicrobial activity were isolated and studied for application as potential resource of natural disease control agents. Method The in vitro methods based on pathogen mycelial growth rate and minimum inhibitory concentration of extracts of various solvents from the fermentation broths of 7 species of S. glabra known to have antimicrobial activities were applied to determine their potential for disease control on plants. Result Of the 7 strains of endophytic fungi, J-10, which was subsequently identified as Lasiodiplodia pseudotheobromae, showed a broad-spectrum antimicrobial activity against tested pathogens. For instance, at the concentration of 2 mg·mL−1, the methanol and ethyl acetate extracts from the J-10 fermentation broth displayed a bacteriostasis rate of 84.84-88.51% against Ceratocystis paradoxa and Fusarium solani. The ethyl acetate extract had the most significant antifungal activity with an EC50 against 8 pathogenic fungi ranging from 0.199 5 mg·mL−1 to 1.172 2 mg·mL−1, and the highest toxicity to Exserohilum turcicum but the lowest to Fusarium solani. The methanol extracts had EC50 against the same 8 pathogens ranging from 0.108 8 mg·mL−1 to 9.468 7 mg·mL−1 with the highest toxicity to Athelia rolfsii and the lowest to Fusarium solani. Furthermore, the ethyl acetate extract was more effective against Proteus vulgaris, Micrococcus lyssodeikticus, Staphyloccocusaureus, Escherichia coli, Salmonella typhi, Bacillus cereus, Bacillus megaterium, Bacillussubtilis, Bacillus anthraci, Micrococcus luteus (Schroeter) Cohn, Ralstonia solanacearum than either the methanol or n-butanol extract and rendered an MIC between 0.125 5 mg·mL−1 and 2.5 mg·mL−1 after 24 h of treatment on the pathogens. Conclusion L. pseudotheobromae showed a broad-spectrum antimicrobial activity against a variety of pathogens. The active components in the fermentation broth were of medium polarity and ethyl acetate soluble. -
图 2 7株内生真菌发酵产物对罗汉果根腐病菌和甘蔗凤梨病菌抑制活性菌斑图(抑菌率>50 %)
A:凤(代表甘蔗凤梨病菌);B:根(代表罗汉果根腐病菌);C:J-9乙对凤(代表J-9乙酸乙酯萃取物对甘蔗凤梨病菌抑制效果,下同);D:J-9甲对凤(甲代表甲醇);E:J-10乙对根;F:J-10甲对根;G:J-10乙对凤;H:J-10甲对凤;I:J-12乙对凤;J:G-5乙对凤;K:G-5甲对凤;L:G-4正对根(正代表正丁醇)
Figure 2. Antimicrobial activity of secondary metabolites of 7 endophytic fungi against C. paradoxa and F. solani (bacteriostatic rate>50%)
A: par, C. paradoxa; B: sol, F. solani; C: J-9e vs. par, inhibitory effect of J-9 ethyl acetate extract on C. paradoxa (same format for the following); D: J-9m vs. par, methanol extract; E: J-10e vs. sol; F: J-10m vs. sol; G: J-10e vs. par; H: J-10m vs. par; I: J-12e vs. par; J: G-5e vs. par; K: G-5m vs. par; L: G-4n vs. sol, n-butanol extract.
图 3 J-10发酵产物不同溶剂萃取层对7种植物病原真菌的抑制活性(菌斑图)
处理质量浓度均为2.5 mg·mL−1。A~G依次为玉米大斑病菌、辣椒炭疽病菌、茶轮斑病菌、贡柑链格孢菌、甘蓝黑斑病菌、甘蔗凤梨病菌、罗汉果根腐病菌;H~N依次为J-10甲醇萃取物对玉米大斑病菌、辣椒炭疽病菌、茶轮斑病菌、贡柑链格孢菌、甘蓝黑斑病菌、甘蔗凤梨病菌、罗汉果根腐病菌的抑制效果;O~U依次为J-10乙酸乙酯萃取物对玉米大斑病菌、辣椒炭疽病菌、茶轮斑病菌、贡柑链格孢菌、甘蓝黑斑病菌、甘蔗凤梨病菌、罗汉果根腐病菌的抑制效果;V为J-10正丁醇萃取物对罗汉果根腐病菌的抑制效果。
Figure 3. Antimicrobial activities of J-10 extracts against 7 plant pathogens (plaque diagram)
Treatment concentration at 2.5 mg·mL−1. A-G: E. turcicum, C. capsica, P. theae, A. citri, A. oleracea, C. paradoxa, and F. solani, respectively; H-N: inhibition effects of J-10 methanol extract on E. turcicum, C. capsica, P. theae, A. citri, A. oleracea, C. paradoxa, and F. solani, respectively; O-U: inhibitory effects of J-10 ethyl acetate extract on E. turcicum, C. capsica, P. theae, A. citri, A. oleracea, C. paradoxa, and F. solani, respectively; V: inhibitory effect of J-10 n-butanol extract on F. solani.
表 1 7种供试植物病原真菌
Table 1. Seven species of plant pathogenic fungi for testing
植物病原真菌
Phytopathogenic fungi拉丁名
Latin name来源
Source辣椒炭疽病菌 Colletotrichum capsica 广西大学农学院植物病理室 茶轮斑病菌 Pesta-lotiopsis theae 广西大学农学院植物病理室 甘蓝黑斑病菌 Alternaria oleracea 广西大学农学院植物病理室 甘蔗凤梨病菌 Ceratocystis paradoxa 广西大学农学院植物病理室 玉米大斑病菌 Exserohilum turcicum 广西大学农学院植物病理室 贡柑链格孢菌 Alternaria citri 广西特色作物研究所 罗汉果根腐病菌 Fusarium solani 本实验室 表 2 11种供试病原细菌
Table 2. Eleven species of pathogenic bacteria for testing
致病细菌
Pathogenic bacteria拉丁名
Latin name来源
Source普通变形杆菌 Proteus vulgaris 桂林医学院微生物实验室 溶壁微球菌 Micrococcus lyssodeikticus 桂林医学院微生物实验室 金黄色葡萄球菌 Staphyloccocusaureus 桂林医学院微生物实验室 大肠杆菌 Escherichia coli 桂林医学院微生物实验室 伤寒沙门氏菌 Salmonella typhi 桂林医学院微生物实验室 蜡样芽孢杆菌 Bacillus cereus 桂林医学院微生物实验室 巨大芽孢杆菌 Bacillus megaterium 桂林医学院微生物实验室 枯草芽孢杆菌 Bacillussubtilis 桂林医学院微生物实验室 炭疽杆菌 Bacillus anthraci 桂林医学院微生物实验室 藤黄微球菌 Micrococcus luteus(Schroeter)Cohn 桂林医学院微生物实验室 罗汉果青枯菌 Ralstonia solanacearum 本实验室 表 3 7种内生真菌发酵产物对罗汉果根腐病菌和甘蔗凤梨病菌的抑制效果
Table 3. Antimicrobial activity of fermentation products of 7 endophytic fungi against C. paradoxa and F. solani
内生真菌
Endophyte来源
Source指示菌株
Test strain抑菌率 Inhibition rate/% 甲醇提取物
methanol extract乙酸乙酯提取物
Ethyl acetate extract正丁醇提取物
n-Butanol ExtractJ-9 茎 罗汉果根腐病菌 32.17±1.07 26.44±1.06 13.22±0.69 甘蔗凤梨病菌 53.26±0.72 66.09±0.63 12.07±1.13 J-10 茎 罗汉果根腐病菌 85.17±0.47 88.51±1.63 11.49±1.63 甘蔗凤梨病菌 86.6±0.88 84.84±0.73 15.16±0.26 J-12 茎 罗汉果根腐病菌 1.59±0.00 1.59±0.00 1.59±0.00 甘蔗凤梨病菌 11.59±0.00 73.91±0.00 — J-20 茎 罗汉果根腐病菌 — 1.59±0.00 1.59±0.00 甘蔗凤梨病菌 48.91±1.19 — — G-4 根 罗汉果根腐病菌 — 27.98±0.21 61.76±1.74 甘蔗凤梨病菌 22.43±1.63 — — G-5 根 罗汉果根腐病菌 1.59±0.00 1.59±0.00 73.53±1.07 甘蔗凤梨病菌 86.23±0.81 92.75±0.90 — Y-8 叶 罗汉果根腐病菌 — 22.75±0.73 2.12±0.21 甘蔗凤梨病菌 — 42.89±0.23 — “—”表示发酵产物对指示菌株无活性。
“—” indicates inactivity of fermentation product against indicator strain.表 4 7种内生真菌发酵产物对3种致病细菌的抑制作用
Table 4. Antimicrobial activities of 7 endophytic fungi fermentation products against 3 pathogens
内生真菌
Endophyte指示菌株
Test strain革兰氏
GramMIC/(mg·mL−1) 甲醇提取物
Methanol extract乙酸乙酯提取物
Ethyl acetate extract正丁醇提取物
n-Butanol ExtractJ-9 溶壁微球菌 G+ 0.625 2.000 0.250 普通变形杆菌 G− 2.500 0.125 0.250 罗汉果青枯菌 G− 1.250 0.500 0.250 J-10 溶壁微球菌 G+ 0.500 0.125 0.625 普通变形杆菌 G− 0.125 0.125 2.500 罗汉果青枯菌 G− 0.250 0.125 1.250 J-12 溶壁微球菌 G+ 0.250 2.50 5.000 普通变形杆菌 G− 0.500 1.25 2.500 罗汉果青枯菌 G− 1.250 5.000 5.000 J-20 溶壁微球菌 G+ — 2.500 — 普通变形杆菌 G− 5.000 1.250 — 罗汉果青枯菌 G− — — — G-4 溶壁微球菌 G+ 4.000 2.500 — 普通变形杆菌 G− 2.500 5.000 — 罗汉果青枯菌 G− 1.000 1.000 4.000 G-5 溶壁微球菌 G+ 1.000 1.250 — 普通变形杆菌 G− 0.250 0.250 — 罗汉果青枯菌 G− 0.500 1.000 — Y-8 溶壁微球菌 G+ 0.250 4.000 2.000 普通变形杆菌 G− 2.000 0.250 0.500 罗汉果青枯菌 G− 1.250 0.500 0.500 “—”表示内生真菌发酵产物对指示菌株无活性。
“—” indicates inactivity of fermentation product against indicator strain.表 5 J-10发酵产物不同溶剂层对7种植物病原菌的抑制活性
Table 5. Antimicrobial activities of J-10 extracts against 7 plant pathogens
供试植物真菌
Tested plantpathogenic fungi萃取层
Extraction layer毒力回归方程
Toxicity regression equation相关系数
Correlation coefficient半效应浓度(EC50)
50% effective concent-ration95%置信限
95% confidence limit玉米大斑病菌
Exserohilum turcicum甲醇 y=5.197 1+0.661 7x 0.977 4 0.503 7 0.228 8−0.778 6 乙酸乙酯 y=5.911 7+1.302 3x 0.963 8 0.199 5 0.140 8−0.258 1 辣椒炭疽病菌
Colletotrichum capsica甲醇 y=4.802 5+0.932 3x 0.997 0 1.539 8 1.130 7−1.948 8 乙酸乙酯 y=5.356 8+0.552 4x 0.979 3 0.226 0 0.163 8−0.288 1 茶轮斑病菌
Pesta-lotiopsis theae甲醇 y=4.928 2+1.397 6x 0.990 3 0.125 5 0.820 2−1.430 8 乙酸乙酯 y=5.725 2+1.080 0x 0.968 5 0.213 1 0.147 4−0.278 8 贡柑链格孢菌
Alternaria citri甲醇 y=5.002 0+1.003 9x 0.996 2 0.995 9 0.642 7−1.349 0 乙酸乙酯 y=5.523 6+0.915 0x 0.986 3 0.267 8 0.197 4−0.338 1 甘蓝黑斑病菌
Alternaria oleracea甲醇 y=4.810 2+0.910 3x 0.994 4 1.616 2 1.184 7−2.047 7 乙酸乙酯 y=5.597 5+1.243 6x 0.982 3 0.330 8 0.242 9−0.418 7 甘蔗凤梨病菌
Ceratocystis paradoxa甲醇 y=4.930 7+1.369 3x 0.986 5 1.123 6 0.919 6−1.427 5 乙酸乙酯 y=5.607 6+1.174 5x 0.977 3 0.303 9 0.203 7−0.404 1 罗汉果根腐病菌
Fusarium solani甲醇 y=4.234 2+0.784 4x 0.998 3 9.468 7 5.576 9−13.360 4 乙酸乙酯 y=4.925 5+1.079 3x 0.983 8 1.172 2 0.863 5−1.480 9 表 6 J-10发酵产物不同溶剂层对11种致病细菌的抑制活性
Table 6. Antimicrobial effects of J-10 extracts against 11 pathogens
供试细菌
Test strain革兰氏
GramMIC/(mg·mL−1) 甲醇提取物
methanol extract乙酸乙酯提取物
Ethyl acetate extract正丁醇提取物
n-Butanol Extract普通变形杆菌 G− 0.1250 0.1250 2.5000 伤寒沙门氏菌 G− 1.2500 1.2500 2.5000 罗汉果青枯菌 G− 0.2500 0.1250 1.2500 大肠杆菌 G− 0.1250 0.1250 1.0000 溶壁微球菌 G+ 0.5000 0.1250 0.6250 蜡样芽孢杆菌 G+ 1.0000 0.6250 0.3125 巨大芽孢杆菌 G+ 1.2500 0.6250 2.5000 枯草芽孢杆菌 G+ 5.0000 2.5000 5.0000 炭疽杆菌 G+ 1.0000 1.2500 2.5000 藤黄微球菌 G+ 0.6250 0.5000 2.5000 金黄色葡萄球菌 G+ 0.5000 0.2500 2.5000 -
[1] 李媛. 草珊瑚, 紫荆和小叶石楠的化学成分及生物活性研究[D]. 北京: 中国协和医科大学, 2006.LI Y. Studies on the chemical constituents and bioactivities of Sarcandra glabra, Cercis chinensis and Photinia parvifolia[D]. Peking Union Medical College, 2006. (in Chinese) [2] 邱道寿, 唐翠芳. 林下良药: 九节茶 [J]. 生命世界, 2020(9):54−55.QIU D S, TANG C F. A good medicine under the forest-Jiujie Tea [J]. Life World, 2020(9): 54−55.(in Chinese) [3] 余意, 车苏容, 卢伟, 等. 闽产道地药材草珊瑚的本草考证 [J]. 安徽农学通报, 2019, 25(12):42−44. doi: 10.3969/j.issn.1007-7731.2019.12.016YU Y, CHE S R, LU W, et al. Herbal Textual Research on Sarcandra Glabra which is one of the Genuine Regional Drugs Produced in Fujian [J]. Anhui Agricultural Science Bulletin, 2019, 25(12): 42−44.(in Chinese) doi: 10.3969/j.issn.1007-7731.2019.12.016 [4] ZENG Y L, LIU J Y, ZHANG Q, et al. The traditional uses, phytochemistry and pharmacology of Sarcandra glabra (Thunb. ) Nakai, a Chinese herb with potential for development: Review [J]. Frontiers in Pharmacology, 2021, 12: 652926. doi: 10.3389/fphar.2021.652926 [5] 陈芳有, 陈志超, 罗永明. 草珊瑚化学成分及生物活性研究进展 [J]. 中国中药杂志, 2022, 47(4):872−879. doi: 10.19540/j.cnki.cjcmm.20211012.201CHEN F Y, CHEN Z C, LUO Y M. Research progress on chemical constituents and biological activities of Sarcandra glabra [J]. China Journal of Chinese Materia Medica, 2022, 47(4): 872−879.(in Chinese) doi: 10.19540/j.cnki.cjcmm.20211012.201 [6] 陈超, 曾慧婷, 何小群, 等. 基于本草学理论的金粟兰科植物选药科学性探讨 [J]. 中国中药杂志, 2018, 43(14):3036−3040. doi: 10.19540/j.cnki.cjcmm.20180528.003CHEN C, ZENG H T, HE X Q, et al. Scientific research on selection of medicinal herbs of Chloranthaceae based on materia medica theory [J]. China Journal of Chinese Materia Medica, 2018, 43(14): 3036−3040.(in Chinese) doi: 10.19540/j.cnki.cjcmm.20180528.003 [7] 郑学芳, 刘海洋, 钟惠民. 草珊瑚化学成分的研究 [J]. 天然产物研究与开发, 2014, 26(8):1221−1224,1284. doi: 10.16333/j.1001-6880.2014.08.015ZHENG X F, LIU H Y, ZHONG H M. Chemical constituents from Sarcandra glabra [J]. Natural Product Research and Development, 2014, 26(8): 1221−1224,1284.(in Chinese) doi: 10.16333/j.1001-6880.2014.08.015 [8] 温柔, 于欢, 严丽萍, 等. 草珊瑚质量标准研究概况 [J]. 江西中医药大学学报, 2020, 32(5):112−115.WEN R, YU H, YAN L P, et al. A survey of studies on quality standards of Sarcandra glabra [J]. Journal of Jiangxi University of Traditional Chinese Medicine, 2020, 32(5): 112−115.(in Chinese) [9] 国家药典委员会. 中国药典[M]. 北京: 中国医药科技出版社, 2020: 1088. [10] 邵佳. 草珊瑚总黄酮提取纯化及药理作用研究[D]. 贵阳: 贵州大学, 2008.SHAO J. Study on the extraction, purification and pharmacological action of total flavonoids in Sarcandra glabra[D]. Guiyang: Guizhou University, 2008. (in Chinese) [11] 郭蒙蒙. 草珊瑚浸膏在体外对幽门螺杆菌的抑菌作用及其与抗生素的协同作用[D]. 南昌: 南昌大学, 2015.GUO M M. The efficacy of Sarcandra glabra extract alone or combined with antibiotics against Helicobacter pylori in vitro[D]. Nanchang: Nanchang University, 2015. (in Chinese) [12] 郁建生, 杨冰, 郁建平, 等. 草珊瑚制剂治疗禽霍乱等研究初报 [J]. 贵州农业科学, 1995(1):44−49.YU J S, YANG B, YU J P, et al. The primary result of treating fowl cholera by sarcandrae glabra nadai preparation [J]. Guizhou Agricultural Sciences, 1995(1): 44−49.(in Chinese) [13] 宋利沙, 蒋妮, 蓝祖栽, 等. 肿节风内生真菌的分离鉴定及拮抗真菌筛选 [J]. 西南农业学报, 2020, 33(5):987−994. doi: 10.16213/j.cnki.scjas.2020.5.014SONG L S, JIANG N, LAN Z Z, et al. Isolation and identification of endophytic fungi from medicinal plants of Sarcandra glabra(thunb. ) and screening of antagonistic fungi [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(5): 987−994.(in Chinese) doi: 10.16213/j.cnki.scjas.2020.5.014 [14] ZHAO J, SHAN T, MOU Y, et al. Plant-derived bioactive compounds produced by endophytic fungi [J]. Mini Reviews in Medicinal Chemistry, 2011, 11(2): 159−168. doi: 10.2174/138955711794519492 [15] 卜宣尹, 杨卫丽. 植物内生菌抑菌机制和抑菌次生代谢产物的研究进展 [J]. 现代药物与临床, 2021, 36(10):2200−2206.BU X Y, YANG W L. Research progress on antibacterial mechanism of plant endophytes and antibacterial secondary metabolites [J]. Drugs & Clinic, 2021, 36(10): 2200−2206.(in Chinese) [16] 张泽, 邓业成, 陈敢, 等. 罗汉果土传病害拮抗真菌的筛选及其抗菌活性研究 [J]. 河南农业科学, 2021, 50(6):91−98. doi: 10.15933/j.cnki.1004-3268.2021.06.011ZHANG Z, DENG Y C, CHEN G, et al. Screening of antagonistic fungi against soil-borne diseases of Siraitia grosvenorii and the antifungal activity of their fermentation products [J]. Journal of Henan Agricultural Sciences, 2021, 50(6): 91−98.(in Chinese) doi: 10.15933/j.cnki.1004-3268.2021.06.011 [17] DENG Y C, YU Y Z, LUO H Y, et al. Antimicrobial activity of extract and two alkaloids from traditional Chinese medicinal plant Stephania dielsiana [J]. Food Chemistry, 2011, 124(4): 1556−1560. doi: 10.1016/j.foodchem.2010.08.011 [18] 陆春雷, 赵雨菡, 姜金源, 等. 樟芝深层发酵液萃取物对食源性致病菌的抑制效果 [J]. 中国食用菌, 2021, 40(6):69−73,79. doi: 10.13629/j.cnki.53-1054.2021.06.014LU C L, ZHAO Y H, JIANG J Y, et al. The antibacterial effect of submerged fermentation broth extracts from Antrodia camphorata on food-borne pathogens [J]. Edible Fungi of China, 2021, 40(6): 69−73,79.(in Chinese) doi: 10.13629/j.cnki.53-1054.2021.06.014 [19] 潘立卫, 罗泽萍, 陈俏燕. 臭牡丹叶化学成分及提取物抑菌作用研究 [J]. 大众科技, 2018, 20(10):18−20. doi: 10.3969/j.issn.1008-1151.2018.10.006PAN L W, LUO Z P, CHEN Q Y. Studies on the chemical constituents of Clerodendrum bungei leaf and their antibacterial effects [J]. Popular Science & Technology, 2018, 20(10): 18−20.(in Chinese) doi: 10.3969/j.issn.1008-1151.2018.10.006 [20] 陈少秀, 杜晓, 景海霞, 等. 氯霉素泼尼松搽剂的体外抗菌活性研究 [J]. 海峡药学, 2021, 33(9):10−13. doi: 10.3969/j.issn.1006-3765.2021.09.004CHEN S X, DU X, JING H X, et al. Observation of antimicrobial activity of chloramphenicol prednisone liniment in vitro [J]. Strait Pharmaceutical Journal, 2021, 33(9): 10−13.(in Chinese) doi: 10.3969/j.issn.1006-3765.2021.09.004 [21] 武怀恒, 万鹏, 黄民松. 毒力回归计算方法及相应软件使用介绍 [J]. 安徽农业科学, 2014, 42(27):9335−9338,9340. doi: 10.3969/j.issn.0517-6611.2014.27.030WU H H, WAN P, HUANG M S. Toxicity regression calculation method and introduction of corresponding software utilization [J]. Journal of Anhui Agricultural Sciences, 2014, 42(27): 9335−9338,9340.(in Chinese) doi: 10.3969/j.issn.0517-6611.2014.27.030 [22] 童悦. 草珊瑚粗提物的抗氧化和抑菌活性及芒果保鲜应用研究[D]. 海口: 海南大学, 2020.TONG Y. Study on the antioxidant and antifungal activities of Sarcandra glabra crude extract and its application in the preservation of mango fruits[D]. Haikou: Hainan University, 2020. (in Chinese) [23] 张焱珍, 潘俊, 尚慧, 等. 77种植物提取物对植物病原菌的生长抑制作用 [J]. 天然产物研究与开发, 2011, 23(1):136−141. doi: 10.3969/j.issn.1001-6880.2011.01.031ZHANG Y Z, PAN J, SHANG H, et al. Growth inhibitory effects of seventy-seven plant extracts on plant pathogen [J]. Natural Product Research and Development, 2011, 23(1): 136−141.(in Chinese) doi: 10.3969/j.issn.1001-6880.2011.01.031 [24] 李华祥, 石瑀, 蒋文浩, 等. 樟芝深层发酵菌丝体提取物对食源性致病菌的抑制作用[J/OL]. 中国食品学报, 2022: 1-7. (2022-02-17). https://kns.cnki.net/kcms/detail/11.4528.TS.20220216.1608.006.html.LI H X, SHI Y, JIANG W H, et al. The antibacterial effect of extracts from Antrodia camphorata Mycelium by submerged fermented on food-borne pathogens[J/OL]. Journal of Chinese Institute of Food Science and Technology, 2022: 1-7. (2022-02-17). https://kns.cnki.net/kcms/detail/11.4528.TS.20220216.1608.006.html.(in Chinese) [25] 柯文杰, 覃华斌, 陈言峰, 等. 25种中草药对普通变形杆菌的体外抑菌试验 [J]. 水产科技情报, 2019, 46(6):328−331. doi: 10.16446/j.cnki.1001-1994.2019.06.007KE W J, QIN H B, CHEN Y F, et al. Antibacterial effects of 25 kinds of Chinese herbal medicines on Proteus vulgaris in vitro [J]. Fisheries Science & Technology Information, 2019, 46(6): 328−331.(in Chinese) doi: 10.16446/j.cnki.1001-1994.2019.06.007 [26] 姜宁, 刘晓鹏, 滕建勋, 等. 紫油厚朴叶提取物对马铃薯青枯病菌的抑制作用及防病效果 [J]. 植物保护, 2008, 34(2):58−60. doi: 10.3969/j.issn.0529-1542.2008.02.015JIANG N, LIU X P, TENG J X, et al. Inhibitory effects of Magnolia officinalis Rehd. et Wils. leaf extract against Ralstonia solanacearum on potato and its control efficacy on potato bacteria wilt [J]. Plant Protection, 2008, 34(2): 58−60.(in Chinese) doi: 10.3969/j.issn.0529-1542.2008.02.015 [27] 刘晓莹, 孙文斌, 陈洁萍, 等. 广西地不容内生真菌DBR-12和DBR-23代谢产物的抑菌活性 [J]. 河南农业科学, 2017, 46(3):75−80. doi: 10.15933/j.cnki.1004-3268.2017.03.015LIU X Y, SUN W B, CHEN J P, et al. Inhibitory activity of metabolites of endophytic fungi DBR-12 and DBR-23 from Stephania kwangsiensis lo [J]. Journal of Henan Agricultural Sciences, 2017, 46(3): 75−80.(in Chinese) doi: 10.15933/j.cnki.1004-3268.2017.03.015 [28] LUO H Y, ZHOU Q Y, DENG Y C, et al. Antifungal activity of the extract and the active substances of endophytic Nigrospora sp. from the traditional Chinese medicinal plant Stephania kwangsiensis [J]. Natural Product Communications, 2017(12): 1889−1892. [29] 唐中发. 海南菠萝叶部三种病原真菌的分离鉴定及两种生防菌的抑菌效果初探[D]. 海口: 海南大学, 2019.TANG Z F. Isolation and identification of three pathogenic fungi from pineapple leaves in Hainan Province and preliminary study on antibacterial effects of two biocontrol bacteria[D]. Haikou: Hainan University, 2019. (in Chinese) [30] 潘彤彤, 薛德胜, 李保华, 等. 苹果枝枯病病原菌鉴定及生物学特性 [J]. 植物病理学报, 2020, 50(1):107−111. doi: 10.13926/j.cnki.apps.000319PAN T T, XUE D S, LI B H, et al. Characterization of the pathogen causing shoot dieback on apple [J]. Acta Phytopathologica Sinica, 2020, 50(1): 107−111.(in Chinese) doi: 10.13926/j.cnki.apps.000319