Genome-wide Identification and Expressions of PIF Family in Longan
-
摘要:
目的 PIFs属于 basic helix-loop-helix(bHLH) 转录因子家族的第 15 亚族,研究其在龙眼( Dimocarpus longan Lour.)中的表达特征可为其参与调控植物的生长发育和抵御逆境胁迫过程中的作用机制提供参考。 方法 基于龙眼基因组和转录组数据进行PIFs基因家族的鉴定与生物信息学分析,对其启动子序列进行顺式作用元件分析;基于龙眼体胚发生早期3个阶段[胚性愈伤组织( Embryogenic callus,EC)、不完全胚性紧实结构(Incomplete embryotic compacted structure,ICpEC)、球形胚(Spherical embryo,GE)]、不同组织部位(花、花蕾、叶、果皮、果肉、根、种子、茎、幼果)、不同温度(15 ℃、25 ℃、35 ℃)和不同光质(蓝光、白光和黑暗)处理下龙眼EC转录组数据,通过龙眼PIFs的FPKM值分析其表达模式,并采用实时荧光定量 PCR(Quantitative real-time polymerase chain reaction,qRT-PCR)分析DlPIFs在龙眼体胚发生早期、不同生长调节剂[生长素(2,4-D)、脱落酸(ABA)、赤霉素(GA3)、水杨酸(SA)、茉莉酸甲酯(MeJA)]处理下的表达情况。 结果 生物信息学分析表明所鉴定的龙眼PIFs家族8个成员均具有bHLH结构域,编码区长度介于975~2298 bp,包含5~8个外显子和6个motif,亚细胞定位预测均定位于细胞核。DlPIFs启动子中不仅含有响应光、激素和非生物胁迫的作用元件,还具有与种子生长和胚胎发育过程相关的作用元件。系统进化树分析显示DlPIFs分布在4大分支上,与拟南芥(Arabidopsis thaliana)、甜橙[Citrus sinensis (L.) Osbeck]亲缘关系较近。不同组织器官的转录组数据分析结果表明,DlPIF1-1的表达量在种子中最高,DlPIF1-2的表达量在果肉中最高,DlPIF4的表达量在茎中最高,DlPIF5的表达量在花蕾中最高,DlPIF7和DlPIF8的表达量在叶中最高。不同光质转录组数据分析结果表明,DlPIF1-1、DlPIF5和DlPIF8在蓝光处理下的表达量明显高于对照,DlPIF4在白光和蓝光处理下的表达量均明显高于对照,DlPIF1-2在3种光质处理下的表达量差别不明显。不同温度的转录组数据分析结果表明,相对高温(35 ℃)促进DlPIF4和DlPIF6的表达,抑制DlPIF1-1、DlPIF1-2、DlPIF3和DlPIF8的表达;相对低温(15 ℃)促进DlPIF1-1、DlPIF3和DlPIF5的表达,抑制DlPIF1-2、DlPIF4、DlPIF6和DlPIF8的表达。qRT-PCR结果显示,DlPIF1-1、DlPIF5、DlPIF6和DlPIF8的表达量随着龙眼体胚早期的发育不断下降,DlPIF1-2和DlPIF3的表达量在EC到ICpEC阶段下降,在ICpEC到GE阶段上升,DlPIF4和DlPIF7的表达模式与之相反。与其他成员相比,DlPIF5和DlPIF7的表达量在5种生长调节剂处理下都具有明显变化。 结论 DlPIFs家族在龙眼的生长发育进程中可能具有不同的功能,并可能参与生物胁迫和非生物胁迫的响应过程。 Abstract:Objective Belonging to the 15th subgroup of basic helix-loop-helix (bHLH) transcription factor family that associated with the growth, development, and stress resistance of plants, PIF family of Dimocarpus longan Lour were identified and their expressions studied. Method PIFs were identified, and bioinformatics extracted from the longan genome and transcriptome database. Cis-acting elements were analyzed for the promoter sequence. Expressions of DlPIFs during early SE (i.e., embryogenic callus or EC, incomplete embryotic compacted structure or ICpEC, and spherical embryo or GE), in different tissues (including flower, flower bud, leaf, pericarp, pulp, root, seed, stem, and young fruit), under different light (e.g., blue, bright, and dark), and at varied temperatures (i.e., 15℃, 25℃, and 35℃) were obtained from the FPKM values. In addition, expressions of the genes in early SE exposed to exogenous hormones such as 2,4-D, ABA, GA3, SA, MeJA were determined by qRT-PCR. Result All DlPIFs had the bHLH domain. The lengths of their coding region ranged from 975 bp to 2298 bp each consisted of 5–8 exons, 4–7 introns, and 6 motifs. The DlPIFs were in the nucleus with promoters containing not only the acting elements in response to light, hormone, and abiotic stress but also those to seed growth and embryonic development. The phylogenetic tree of DlPIFs distributed in 4 branches closely related to Arabidopsis thaliana and Citrus sinensis (L.) Osbeck. The transcriptomes of different tissues and organs showed the highest expression of DlPIF1-1 in the seeds, that of DlPIF1-2 in the pulp, that of DlPIF4 in the stems, that of DlPIF5 in the flower buds, and those of DlPIF7 and DlPIF8 in the leaves. The photometric transcriptomes indicated that the expressions of DlPIF1-1, DlPIF5, and DlPIF8 under blue light were significantly higher than that of control, that of DlPIF4 under white or blue light significantly higher than that of control, and that of DlPIF1-2 did not differ significantly under different light exposures. At 35oC, the relatively high temperature heightened the expressions of DlPIF4 and DlPIF6 but depressed those of DlPIF1-1, DlPIF1-2, DlPIF3, and DlPIF8. At 15 ℃, on the other hand, the expressions of DlPIF1-1, DlPIF3, and DlPIF5 were enhanced, while those of DlPIF1-2, DlPIF4, DlPIF6, and DlPIF8 inhibited. qRT-PCR results showed that the expressions of DlPIF1-1, DlPIF5, DlPIF6, and DlPIF8 decreased with the longan embryonic development at the early stage. Those of DlPIF1-2, and DlPIF3 decreased from EC to ICpEC, those of DlPIF4 and DlPIF7 decreased from ICpEC to GE, and those of DlPIF4 and DlPIF7 were the opposite. In response to the exposure to 5 exogenous hormones, DlPIF5 and DlPIF7 expressed significantly different from the others. Conclusion DlPIFs might have varied functions associated with the growth and development, as well as biological and/or abiotic stress responses, of longan. -
表 1 DlGRF基因家族qRT-PCR引物
Table 1. qRT-PCR primers of DlPIFs
引物名称
Primer name序列
Sequences(5′-3′)DlPIF1-1 F GCAAAACGGTCAGGTGGT R TTGGCGTCGTTGAGAGG DlPIF1-2 F CACATCACCACCACCGAA R TCCTCGCTATCACAGTCATCA DlPIF3 F TCTCAAACCGCGAAAACC R TCCAGACAACTCAGGCAAGA DlPIF4 F AGGGACCGACACATTTTCTG R TCGAAGGGTCCATAGTGAGC DlPIF5 F TACAGGGGCAGAAAATGAGC R TGAATCCACGAGACTGTTTCA DlPIF6 F GATGACCAATCCGAAGCTGT R CACTAAGATCAGCAGACCAC DlPIF7 F ATTCGTTCCATCTCCGTTTCT R AGAGTGCTGCCATCTTGTTGT DlPIF8 F TGATGCCCCCATGTTAGAC R AGCTTGTGGCTTGGTTGAC FSD-Q F GGTCAGATGGTGAAGCCGTAGAG R GTCTATGCCACCGATACAACAAACCC 表 2 龙眼PIFs成员基本理化性质
Table 2. Basic physicochemical properties of DlPIFs
三代基因ID
Third generation
gene ID二代基因ID
Second generation
gene ID基因名称
Gene name注释
AnnotatedCDS长度
Length/bp氨基酸数
Amino acid number等电点
PI分子量
Molecular weight/Da不稳定系数
Instability index亲水性
GravyDlo012584 Dlo_012166.1 DlPIF1-1 AtPIF1-1 1605 534 6.39 59036.32 62.06 −0.696 Dlo015892 Dlo_000274.1 DlPIF1-2 AtPIF1-2 1197 398 5.44 43473.33 56.83 −0.545 Dlo034359 DlPIF3 AtPIF3 2298 765 6.10 82158.84 54.69 −0.586 Dlo028134 Dlo_000977.1 DlPIF4 AtPIF4 1617 538 6.73 58258.97 62.25 −0.647 Dlo014068 Dlo_018063.1 DlPIF5 AtPIF5 975 324 5.48 35089.75 68.21 −0.624 Dlo011892 DlPIF6 AtPIF6 1695 540 9.21 62892.14 57.87 −0.741 Dlo031044 Dlo_031800.1 DlPIF7 AtPIF7 1362 453 8.39 49786.89 74.28 −0.776 Dlo012986 Dlo_028817.1 DlPIF8 AtPIF8 1431 476 8.55 50818.37 58.46 −0.579 表 3 龙眼PIFs家族二级结构及亚细胞定位
Table 3. Secondary structure and subcellular localization of DlPIFs
基因
Geneα-螺旋
Alpha
helix/%β-转角
Beta
turn/%延伸链
Extended
strand/%无规卷曲
Random
coil/%亚细胞定位
Subcellular
localizationDLPIF1-1 23.97 2.62 7.12 66.29 细胞核 DLPIF1-2 21.36 1.26 8.04 69.35 细胞核 DLPIF3 17.12 2.09 7.45 73.33 细胞核 DLPIF4 20.26 1.86 5.39 72.49 细胞核 DLPIF5 24.38 3.70 8.33 63.58 细胞核 DLPIF6 23.05 2.30 4.96 69.68 细胞核 DLPIF7 30.02 1.32 3.75 64.9 细胞核 DLPIF8 29.41 1.47 5.04 64.08 细胞核 -
[1] 张媛媛. 光敏色素的结构及其信号调控机制 [J]. 湖北农业科学, 2020, 59(4):5−10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001ZHANG Y Y. Structure and signal regulation mechanism of phytochrome [J]. Hubei Agricultural Sciences, 2020, 59(4): 5−10.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2020.04.001 [2] ZHONG S W, SHI H, XUE C, et al. A molecular framework of light-controlled phytohormone action in Arabidopsis [J]. Current Biology, 2012, 22(16): 1530−1535. doi: 10.1016/j.cub.2012.06.039 [3] LAU O S, DENG X W. Plant hormone signaling lightens up: Integrators of light and hormones [J]. Current Opinion in Plant Biology, 2010, 13(5): 571−577. doi: 10.1016/j.pbi.2010.07.001 [4] XU X S, PAIK I, ZHU L, et al. Illuminating progress in phytochrome-mediated light signaling pathways [J]. Trends in Plant Science, 2015, 20(10): 641−650. doi: 10.1016/j.tplants.2015.06.010 [5] KHANNA R, HUQ E, KIKIS E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic Helix-loop-Helix transcription factors [J]. The Plant Cell, 2004, 16(11): 3033−3044. doi: 10.1105/tpc.104.025643 [6] NI M, TEPPERMAN J M, QUAIL P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic Helix-loop-Helix protein [J]. Cell, 1998, 95(5): 657−667. doi: 10.1016/S0092-8674(00)81636-0 [7] ZHANG Y, MAYBA O, PFEIFFER A, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis [J]. PLoS Genetics, 2013, 9(1): e1003244. doi: 10.1371/journal.pgen.1003244 [8] JEONG J, CHOI G. Phytochrome-interacting factors have both shared and distinct biological roles [J]. Molecules and Cells, 2013, 35(5): 371−380. doi: 10.1007/s10059-013-0135-5 [9] DE LUCAS M, PRAT S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals [J]. The New Phytologist, 2014, 202(4): 1126−1141. doi: 10.1111/nph.12725 [10] DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development [J]. Annual Review of Plant Biology, 2016, 67: 513−537. doi: 10.1146/annurev-arplant-043015-112252 [11] OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic Helix-loop-Helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana [J]. The Plant Cell, 2004, 16(11): 3045−3058. doi: 10.1105/tpc.104.025163 [12] LI L, LJUNG K, BRETON G, et al. Linking photoreceptor excitation to changes in plant architecture [J]. Genes & Development, 2012, 26(8): 785−790. [13] MUTASA-GÖTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks [J]. Journal of Experimental Botany, 2009, 60(7): 1979−1989. doi: 10.1093/jxb/erp040 [14] HUQ E, AL-SADY B, HUDSON M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis [J]. Science, 2004, 305(5692): 1937−1941. doi: 10.1126/science.1099728 [15] STEPHENSON P G, FANKHAUSER C, TERRY M J. PIF3 is a repressor of chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7654−7659. doi: 10.1073/pnas.0811684106 [16] LIU Z J, ZHANG Y Q, WANG J F, et al. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings [J]. Plant Science, 2015, 238: 64−72. doi: 10.1016/j.plantsci.2015.06.001 [17] HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis [J]. The EMBO Journal, 2002, 21(10): 2441−2450. doi: 10.1093/emboj/21.10.2441 [18] LORRAIN S, ALLEN T, DUEK P D, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors [J]. The Plant Journal, 2007, 53(2): 312−323. doi: 10.1111/j.1365-313X.2007.03341.x [19] FRANKLIN K A, LEE S H, PATEL D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20231−20235. doi: 10.1073/pnas.1110682108 [20] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484(7393): 242−245. doi: 10.1038/nature10928 [21] 汪硕, 丁岚, 刘建祥, 等. 拟南芥热形态建成中PIF4下游基因研究 [J]. 生物技术通报, 2018, 34(7):57−65. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211WANG S, DING L, LIU J X, et al. PIF4-regulated thermo-responsive genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57−65.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211 [22] FIORUCCI A S, GALVÃO V C, INCE Y Ç, et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings [J]. The New Phytologist, 2020, 226(1): 50−58. doi: 10.1111/nph.16316 [23] 徐向东, 任逸秋, 张利, 等. 杨树PIF基因家族成员表达模式研究 [J]. 林业科学研究, 2018, 31(2):19−25. doi: 10.13275/j.cnki.lykxyj.2018.02.003XU X D, REN Y Q, ZHANG L, et al. Analysis of expression pattern of PIF family members in Populus [J]. Forest Research, 2018, 31(2): 19−25.(in Chinese) doi: 10.13275/j.cnki.lykxyj.2018.02.003 [24] JIANG B C, SHI Y T, ZHANG X Y, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6695−E6702. [25] 王峰. PhyA、HY5和PIF4在光质调控番茄低温抗性中的机制研究[D]. 杭州: 浙江大学, 2017.WANG F. Roles and mechanisms of phyA-, HY5- and PIF4- mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [26] 陈裕坤, 林晓艺, 赖钟雄. 龙眼体细胞胚胎发生研究进展 [J]. 热带作物学报, 2020, 41(10):1990−2002. doi: 10.3969/j.issn.1000-2561.2020.10.006CHEN Y K, LIN X Y, LAI Z X. Advances in somatic embryogenesis of Dimocarpus longan lour [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 1990−2002.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.10.006 [27] 赖钟雄, 潘良镇, 陈振光. 龙眼胚性细胞系的建立与保持 [J]. 福建农业大学学报, 1997, 26(2):160−167.LAI Z X, PAN L Z, CHEN Z G. Establishment and maintenance of Longan embryogenic cell lines [J]. Journal of Fujian Agricultural University, 1997, 26(2): 160−167.(in Chinese) [28] 刘范, 田娜, 孙雪丽, 等. 香蕉GLP基因家族全基因组鉴定及表达分析 [J]. 园艺学报, 2020, 47(10):1930−1946. doi: 10.16420/j.issn.0513-353x.2019-0983LIU F, TIAN N, SUN X L, et al. Genome-wide identification and expression analysis of banana GLP gene family [J]. Acta Horticulturae Sinica, 2020, 47(10): 1930−1946.(in Chinese) doi: 10.16420/j.issn.0513-353x.2019-0983 [29] 李汉生. 光对龙眼细胞培养中功能性代谢产物的影响及分子机制[D]. 福州: 福建农林大学, 2018.LI H S. Effect of light on functional metabolites and its molecular mechanism in cultivation of Longan cells[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese) [30] LIN Y L, LAI Z X. Reference gene selection for qPCR analysis during somatic embryogenesis in Longan tree [J]. Plant Science, 2010, 178(4): 359−365. doi: 10.1016/j.plantsci.2010.02.005 [31] LEIVAR P, MONTE E. PIFs: Systems integrators in plant development [J]. The Plant Cell, 2014, 26(1): 56−78. doi: 10.1105/tpc.113.120857 [32] GAO Y, REN X Y, QIAN J J, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L. ): Identification, evolution, and expression analysis [J]. Acta Physiologiae Plantarum, 2019, 41(1): 8. doi: 10.1007/s11738-018-2802-9 [33] 吴昊, 张城瑜, 倪珊珊, 等. 香蕉基因MaPIF家族全基因组鉴定及激素表达模式[J]. 应用与环境生物学报. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036.WU H, ZHANG C Y, NI S S, et al. Genome-wide identification and hormone expression pattern of the MaPIF family of banana gene[J]. Chinese Journal of Applied and Environmental Biology. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036. (in Chinese) [34] 荐红举, 尚丽娜, 金中辉, 等. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析 [J]. 作物学报, 2022, 48(1):86−98.JIAN H J, SHANG L N, JIN Z H, et al. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86−98.(in Chinese) [35] 袁凌云, 张利婷, 蓝天, 等. 白菜PIF基因家族及表达模式分析[J]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html.YUAN L Y , ZHANG L T, LAN T, et al. Identification and expression analysis of PIF gene family in Chinese cabbage[J]. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html. (in Chinese) [36] 吴广霞. 玉米光敏色素作用因子PIFs在光信号和光形态建成中的功能研究[D]. 北京: 中国农业科学院, 2020WU G X. Initial functional characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) [37] 武志强, 周家伟. 植物细胞器基因编辑研究进展 [J]. 广西植物, 2021, 41(10):1654−1664. doi: 10.11931/guihaia.gxzw202106033WU Z Q, ZHOU J W. Advances in plant organelle gene editing [J]. Guihaia, 2021, 41(10): 1654−1664.(in Chinese) doi: 10.11931/guihaia.gxzw202106033 [38] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family [J]. The Plant Cell, 2003, 15(8): 1749−1770. doi: 10.1105/tpc.013839 [39] KIM J, YI H, CHOI G, et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction [J]. The Plant Cell, 2003, 15(10): 2399−2407. doi: 10.1105/tpc.014498 [40] MONTE E, TEPPERMAN J M, AL-SADY B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16091−16098. doi: 10.1073/pnas.0407107101 [41] FUJIMORI T, YAMASHINO T, KATO T, et al. Circadian-controlled basic/Helix-loop-Helixfactor,PIL6, implicated in light-signal transduction in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2004, 45(8): 1078−1086. doi: 10.1093/pcp/pch124 [42] LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels [J]. The Plant Cell, 2008, 20(2): 337−352. doi: 10.1105/tpc.107.052142 [43] PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiology, 2017, 176(2): 1025−1038. [44] WANG F F, LIAN H L, KANG C Y, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana [J]. Molecular Plant, 2010, 3(1): 246−259. doi: 10.1093/mp/ssp097 [45] 任小芸. ZmPIFs基因的克隆、表达及AtPIFs基因的抗旱功能研究[D]. 扬州: 扬州大学, 2017.REN X Y. Cloning and expression of ZmPIFs and study on the drought resistant function of AtPIFs[D]. Yangzhou: Yangzhou University, 2017. (in Chinese) [46] KOINI M A, ALVEY L, ALLEN T, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4 [J]. Current Biology, 2009, 19(5): 408−413. doi: 10.1016/j.cub.2009.01.046 [47] QIU Y J, LI M N, KIM R J A, et al. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA [J]. Nature Communications, 2019, 10: 140. doi: 10.1038/s41467-018-08059-z [48] LEE C M, THOMASHOW M F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 15054−15059. doi: 10.1073/pnas.1211295109 [49] LAU O S, HUANG X, CHARRON J B, et al. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock [J]. Molecular Cell, 2011, 43(5): 703−712. doi: 10.1016/j.molcel.2011.07.013 [50] 陈笑笑. PIF4介导光质调控番茄低温抗性的作用机制[D]. 杭州: 浙江大学, 2019.CHEN X X. The mechanisms of PIF4-mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) [51] 李春平, 赖成霞, 徐海江, 等. 不同因素对早熟陆地棉离体胚成苗的影响 [J]. 新疆农业科学, 2020, 57(9):1596−1603.LI C P, LAI C X, XU H J, et al. Effects of different factors on early-maturing upland cotton excised embryos into seedlings [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1596−1603.(in Chinese) [52] 石岭, 霍秀文, 郝春光. 不同光质对河套蜜瓜器官培养的影响 [J]. 内蒙古农牧学院学报, 1999, 20(2):76−79.SHI L, HUO X W, HAO C G. Effects of different light quality on organ cultire of Cucumis melo l. var cantalupensis naut [J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1999, 20(2): 76−79.(in Chinese) [53] 胡恒康. 山核桃合子胚发育、体胚再生及其生物学特性研究[D]. 南昌: 江西农业大学, 2011.HU H K. Studies on biological characteristics of development and regeneration of zygotic embryos in hickory (Carya cathayensis sarg.)[D]. Nanchang: Jiangxi Agricultural University, 2011. (in Chinese)