Identification and Bioinformatics of PEBP Family in Hemp
-
摘要:
目的 对大麻中磷脂酰乙醇胺结合蛋白(phosphatidyl ethanolamine binding protein, PEBP)进行鉴定和生物信息学分析,为PEBP基因家族调控大麻的生长发育及开花奠定基础。 方法 以拟南芥PEBP家族基因作为参考序列,利用NCBI、MEME、TBtools等生物信息学工具对已有的大麻基因组数据进行筛选并鉴定大麻PEBP基因。 结果 从大麻基因组中共筛选出12个PEBP基因,分为FT-LIKE、TFL-LIKE、MET-LIKE三个亚家族,均为亲水性蛋白,分布于细胞质与细胞核中;motif1-motif5为大麻PEBP基因的特征基序,定位在7条染色体上。大麻PEBP基因含有2个外显子及2个以上内含子,其启动子主要含有光反应顺式调节元件、各类激素顺式调控元件,编码蛋白主要由无规则卷曲构成。 结论 共鉴定出12个CsPEBP基因家族成员,通过motif分析、多物种构建进化树,确定大麻PEBP基因具有高度保守性,并预测和分析其潜在的分子功能。 Abstract:Objective The phosphatidyl ethanolamine binding protein (PEBP) in Cannabis sativa L. (hemp) was identified and bioinformatics of the gene family analyzed. Method Using the PEBP family of arabidopsis as reference, the existing genome data on C. sativa were collected by NCBI, MEME, and TBtools. Result Twelve PEBPs were identified from the database. They were divided into 3 subfamilies as FT-like, TFL-like, and MET-like. These hydrophilic proteins were distributed in cytoplasm and nucleus with the characteristic motif1-motif5 of cannabis PEBP that located on 7 chromosomes. The genes contained 2 exons and more than 2 introns with a promoter containing mainly light-responsive cis-regulatory elements and various hormone cis-regulatory elements. The encoded protein composed basically of random coils. Result Twelve genes in the PEBP family of C. sativa were identified with their potential molecular functions analyzed. -
图 4 大麻与拟南芥、水稻PEBP基因家族系统进化树
A:粉色为拟南芥PEBP基因家族,蓝色为大麻PEBP基因家族,黄色为水稻PEBP基因家族;B:★为FT-LKE亚家族,▲TFL1-LKE亚家族,●MFT-LIKE亚家族。
Figure 4. Phylogenetic trees of PEBP family of hemp, rice, and arabidopsis
A: pink indicates PEBP family of arabidopsis; blue, that of hemp; yellow, that of rice. B: ★ indicates FT-like subfamily; ▲, TFL-like subfamily; and ●, MFT-like subfamily.
图 5 大麻CsPEBPs基因启动子区顺式作用元件
注:A:脱落酸反应顺式作用元件;B:赤霉素反应元件;C:光反应顺式调节元件;D:玉米醇溶蛋白代谢调节顺式调节元件;E:茉莉酸响应元件;F:分生组织表达调控顺式作用元件;G:厌干旱诱导顺式作用元件氧诱导顺式作用元件;H:干旱诱导顺式作用元件;I:水杨酸响应元件;J:防御和应激反应响应元件;K:低温响应元件;L:昼夜节律调控顺式作用元件。
Figure 5. Cis-acting elements in the promoter region of C. sativa CsPEBPs genes
A: cis-acting element involved in abscisic acid responsiveness; B: gibberellin-responsive element; C: cis-acting regulatory element involved in light responsiveness; D: cis-acting regulatory element involved in zein metabolism regulation; E: cis-acting regulatory element involved in MeJA-responsiveness; F: cis-acting regulatory element related to meristem expression; G: cis-acting regulatory element essential for anaerobic induction; H: MYB binding site involved in drought-inducibility; I: cis-acting element involved in salicylic acid responsiveness; J: cis-acting element involved in defense and stress responsiveness; K: cis-acting element involved in low-temperature responsiveness; L: cis-acting regulatory element involved in circadian control.
表 1 大麻CsPEBPs基因的理化性质分析
Table 1. Physicochemical properties of C. sativa CsPEBPs
基因名称
Gene name氨基酸数量
Amino acid quantity等电点
IP分子质量
Molecular mass不稳定指数
Instability index脂溶指数
Lipid soluble index总平均疏水指数
Total average
hydrophobic index亚细胞定位
Subcellular localizationCsPEBP1 176 7.78 19873.40 34.82 77.39 −0.430 细胞核 Nucleus CsPEBP2 180 7.76 20187.73 38.50 72.94 −0.418 细胞核 Nucleus CsPEBP3 175 9.12 19635.39 45.54 72.29 −0.373 细胞质 Cytoplasm CsPEBP4 190 8.62 21595.23 36.27 74.79 −0.545 细胞核 Nucleus CsPEBP5 175 6.97 19315.10 56.79 79.71 −0.298 细胞核、细胞质 Nucleus、cytoplasm CsPEBP6 172 8.95 19283.14 42.94 80.93 −0.197 细胞质 Cytoplasm CsPEBP7 176 7.73 19642.25 40.09 79.09 −0.296 细胞核 Nucleus CsPEBP8 174 8.93 19019.01 31.52 88.91 −0.056 细胞核、细胞质 Nucleus、cytoplasm CsPEBP9 174 8.93 19019.01 31.52 88.91 −0.056 细胞核、细胞质 Nucleus、cytoplasm CsPEBP10 178 9.20 19988.82 41.46 83.15 −0.292 细胞质 Cytoplasm CsPEBP11 184 6.09 20758.75 30.72 80.98 −0.243 细胞质 Cytoplasm CsPEBP12 175 9.41 20015.05 45.92 76.17 −0.287 细胞质 Cytoplasm 表 2 大麻CsPEBPs蛋白质的二级结构预测
Table 2. Predicted secondary structure of CsPEBP protein
(%) 基因名称
Gene nameα-螺旋
Alpha helixβ-折叠
Beta turn延伸链
Extended strand无规则卷曲
Random coilCsPEBP1 14.20 4.55 25.00 56.25 CsPEBP2 13.89 5.00 27.22 53.89 CsPEBP3 16.57 4.00 22.86 56.57 CsPEBP4 13.68 4.21 25.79 56.32 CsPEBP5 17.14 3.43 23.43 56.00 CsPEBP6 16.86 4.65 23.84 54.65 CsPEBP7 13.07 5.68 25.00 56.25 CsPEBP8 16.67 3.45 22.41 57.47 CsPEBP9 16.67 3.45 22.41 57.47 CsPEBP10 16.29 7.30 24.16 52.25 CsPEBP11 19.02 3.80 22.83 54.35 CsPEBP12 14.86 3.43 24.57 57.14 -
[1] KARLGREN A, GYLLENSTRAND N, KÄLLMAN T, et al. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution [J]. Plant Physiology, 2011, 156(4): 1967−1977. doi: 10.1104/pp.111.176206 [2] KOBAYASHI Y, KAYA H, GOTO K, et al. A pair of related genes with antagonistic roles in mediating flowering signals [J]. Science, 1999, 286(5446): 1960−1962. doi: 10.1126/science.286.5446.1960 [3] BANFIELD M J, BRADY R L. The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator1 [J]. Journal of Molecular Biology, 2000, 297(5): 1159−1170. doi: 10.1006/jmbi.2000.3619 [4] BRADLEY D, CARPENTER R, COPSEY L, et al. Control of inflorescence architecture in Antirrhinum [J]. Nature, 1996, 379(6568): 791−797. doi: 10.1038/379791a0 [5] 张礼凤, 徐冉, 张彦威, 等. 大豆PEBP基因家族的初步分析 [J]. 植物遗传资源学报, 2015, 16(1):151−157.ZHANG L F, XU R, ZHANG Y W, et al. Preliminary analysis of the PEBP gene family in soybean(Glycine max) [J]. Journal of Plant Genetic Resources, 2015, 16(1): 151−157.(in Chinese) [6] 李超, 张彦楠, 刘焕龙, 等. 亚洲棉和雷蒙德氏棉PEBP家族基因的鉴定及该家族基因在陆地棉组织中表达分析 [J]. 作物学报, 2015, 41(3):394−404. doi: 10.3724/SP.J.1006.2015.00394LI C, ZHANG Y N, LIU H L, et al. Identification of PEBP family genes of Asian cotton and Raymond cotton and expression analysis of this family gene in upland cotton tissues [J]. Acta Agronomica Sinica, 2015, 41(3): 394−404.(in Chinese) doi: 10.3724/SP.J.1006.2015.00394 [7] 刘合霞, 刘秦, 周兴文, 等. 茶树PEBP基因家族结构与功能特征分析 [J]. 分子植物育种, 2020, 18(20):6657−6664.LIU H X, LIU Q, ZHOU X W, et al. Structure and function characteristics analysis of PEBP gene family in Camellia sinensis [J]. Molecular Plant Breeding, 2020, 18(20): 6657−6664.(in Chinese) [8] 杨杰, 贺新兴, 陈蓉, 等. 甜橙PEBP基因家族的鉴定及在成花过程的表达分析 [J]. 分子植物育种, 2022, 20(4):1127−1136.YANG J, HE X X, CHEN R, et al. Genome-wide identification of PEBP gene family and expression analysis during flowering process in Citrus sinensis [J]. Molecular Plant Breeding, 2022, 20(4): 1127−1136.(in Chinese) [9] TAMAKI S, MATSUO S, WONG H L, et al. Hd3a protein is a mobile flowering signal in rice [J]. Science, 2007, 316(5827): 1033−1036. doi: 10.1126/science.1141753 [10] 李铮, 潘根, 陶杰, 等. 大麻FT同源基因CsHd3a的克隆及表达谱分析 [J]. 华北农学报, 2021, 36(3):41−49. doi: 10.7668/hbnxb.20191943LI Z, PAN G, TAO J, et al. Cloning and expression profile analysis of FT homologous gene CsHd3a in Cannabis [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 41−49.(in Chinese) doi: 10.7668/hbnxb.20191943 [11] 袁秀云, 张仙云, 马杰, 等. 植物开花的分子调控机理研究 [J]. 安徽农业科学, 2010, 38(2):614−616. doi: 10.3969/j.issn.0517-6611.2010.02.024YUAN X Y, ZHANG X Y, MA J, et al. Molecular mechanisms of flowering in plants [J]. Journal of Anhui Agricultural Sciences, 2010, 38(2): 614−616.(in Chinese) doi: 10.3969/j.issn.0517-6611.2010.02.024 [12] 罗碧珍, 罗永海. 开花植物CO/FT分子途径的生物学功能和分子进化 [J]. 福建农林大学学报(自然科学版), 2021, 50(2):155−163.LUO B Z, LUO Y H. The biological function and molecular evolution of CO/FT pathway in flowering plants [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(2): 155−163.(in Chinese) [13] ABE M, KOBAYASHI Y, YAMAMOTO S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309(5737): 1052−1056. doi: 10.1126/science.1115983 [14] YAMAGUCHI A, KOBAYASHI Y, GOTO K, et al. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT [J]. Plant and Cell Physiology, 2005, 46(8): 1175−1189. doi: 10.1093/pcp/pci151 [15] CORBESIER L, VINCENT C, JANG S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science, 2007, 316(5827): 1030−1033. doi: 10.1126/science.1141752 [16] WIGGE P A, KIM M C, JAEGER K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis [J]. Science, 2005, 309(5737): 1056−1059. doi: 10.1126/science.1114358 [17] VARKONYI-GASIC E, MOSS S M A, VOOGD C, et al. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit [J]. The New Phytologist, 2013, 198(3): 732−746. doi: 10.1111/nph.12162 [18] TAO Y B, LUO L, HE L L, et al. A promoter analysis of MOTHER OF FT AND TFL1 [J]. Journal of Plant Research, 2014, 127(4): 513−524. doi: 10.1007/s10265-014-0639-x [19] XI W Y, LIU C, HOU X L, et al. Mother of ft and tfl1 regulates seed germination through a negative feedback loop modulating Aba signaling in Arabidopsis [J]. The Plant Cell, 2010, 22(6): 1733−1748. doi: 10.1105/tpc.109.073072 [20] JIN S, NASIM Z, SUSILA H, et al. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants [J]. Seminars in Cell & Developmental Biology, 2021, 109: 20−30. [21] BENNETT T, DIXON L E. Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages [J]. BMC Biology, 2021, 19(1): 181. doi: 10.1186/s12915-021-01128-8 [22] 赵建文. 受激素和干旱调控的PhePEBP家族基因与毛竹笋芽萌发相关[D]. 杭州: 浙江农林大学, 2019.ZHAO J W. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds in Phyllostachys edulis[D]. Hangzhou: Zhejiang A & F University, 2019. (in Chinese) [23] 荐红举, 杨博, 李阳阳, 等. 甘蓝型油菜PEBP基因家族的鉴定与表达分析 [J]. 作物学报, 2019, 45(3):354−364. doi: 10.3724/SP.J.1006.2019.84095JIAN H J, YANG B, LI Y Y, et al. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354−364.(in Chinese) doi: 10.3724/SP.J.1006.2019.84095 [24] 孙洪波, 贾贞, 韩天富. PEBP家族基因在植物发育调控中的作用 [J]. 植物生理学通讯, 2009, 45(8):739−747.SUN H B, JIA Z, HAN T F. Roles of PEBP family genes in the development of plants [J]. Plant Physiology Communications, 2009, 45(8): 739−747.(in Chinese) [25] 顾超, 郭丹丽, 张峰, 等. 海岛棉GbMFT2基因的克隆及表达分析 [J]. 棉花学报, 2014, 26(3):197−203. doi: 10.3969/j.issn.1002-7807.2014.03.002GU C, GUO D L, ZHANG F, et al. Cloning and expression analysis of the GbMFT2 gene in Gossypium barbadense L [J]. Cotton Science, 2014, 26(3): 197−203.(in Chinese) doi: 10.3969/j.issn.1002-7807.2014.03.002 [26] 王庆峰, 张雪, 李庆鹏, 等. 工业大麻种质资源农艺性状初步评价 [J]. 农业与技术, 2020, 40(10):34−38.WANG Q F, ZHANG X, LI Q P, et al. Preliminary evaluation of agronomic characters of industrial hemp germplasm resources [J]. Agriculture and Technology, 2020, 40(10): 34−38.(in Chinese) [27] 张晓艳, 孙宇峰, 曹焜, 等. 黑龙江省工业大麻育种现状及展望 [J]. 作物杂志, 2019(3):15−19.ZHANG X Y, SUN Y F, CAO K, et al. Status and prospect of industrial hemp breeding in Heilongjiang Province [J]. Crops, 2019(3): 15−19.(in Chinese) [28] 赵浩含, 陈继康, 熊和平. 中国工业大麻种业创新发展策略研究 [J]. 农业现代化研究, 2020, 41(5):765−771.ZHAO H H, CHEN J K, XIONG H P. Research on the innovative development strategies of industrial hemp seed industry in China [J]. Research of Agricultural Modernization, 2020, 41(5): 765−771.(in Chinese) [29] 吕鹤男, 章少华, 吕天刚, 等. LED光照对大麻素积累的影响及大麻种植人工光照系统设计探讨 [J]. 中国照明电器, 2021(7):7−26,34. doi: 10.3969/j.issn.1002-6150.2021.07.002LYU H N, ZHANG S H, LYU T G, et al. Discussion on the effect of LED light on cannabinoid accumulation and the design of artificial lighting system for hemp (Cannabis sativa L. ) cultivation [J]. China Light & Lighting, 2021(7): 7−26,34.(in Chinese) doi: 10.3969/j.issn.1002-6150.2021.07.002 [30] 温东, 王梦月, 米要磊, 等. 中药火麻仁基原植物大麻的TIFY基因家族鉴定及功能分析 [J]. 中国实验方剂学杂志, 2020, 26(24):134−143.WEN D, WANG M Y, MI Y L, et al. Genome-wide identification and characterization of TIFY gene family in medicinal plant Cannabis sativa [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(24): 134−143.(in Chinese) [31] 宫云鹤, 赵春雷, 王希, 等. 甜菜NBS-LRR家族基因的鉴定与分析[J/OL]. 植物保护学报: 1-18[2022-07-19]. DOI: 10.13802/j. cnki. zwbhxb. 2021.2021023.GONG Y H, ZHAO C L, WANG X, et al. Identification and analysis of sugar beet NBS-LRR family genes[J/OL]. Acta Horticulturae Sinica: 1-18 [2022-07-19]. DOI: 10.13802/j.cnki.zwbhxb.2021.2021023.(in Chinese) [32] 王震, 米要磊, 孟祥霄, 等. 中药火麻仁基原植物大麻LBD基因家族成员的鉴定与表达分析 [J]. 中国中药杂志, 2020, 45(22):5477−5486.WANG Z, MI Y L, MENG X X, et al. Genome-wide analysis of LBD(lateral organ boundaries domain) gene family in Cannabis sativa of traditional Chinese medicine hemp seed [J]. China Journal of Chinese Materia Medica, 2020, 45(22): 5477−5486.(in Chinese) [33] 黄俊, 江羽宸, 张云川, 等. 橡胶草SRPP/REF家族基因的鉴定及表达分析 [J]. 植物生理学报, 2020, 56(7):1541−1552.HUANG J, JIANG Y C, ZHANG Y C, et al. Genome-wide identification and expressional analysis of SRPP/REF gene family in Taraxacum kok-saghyz [J]. Plant Physiology Journal, 2020, 56(7): 1541−1552.(in Chinese) [34] 陈平, 喻春明, 王延周, 等. 苎麻与大麻CesA1基因的生物信息学分析 [J]. 中国麻业科学, 2013, 35(3):118−121,154. doi: 10.3969/j.issn.1671-3532.2013.03.002CHEN P, YU C M, WANG Y Z, et al. Bioinformatics analysis of cellulose synthase gene (CesA1) of Boehmeria nivea L. and Cannabis sativa L [J]. Plant Fiber Sciences in China, 2013, 35(3): 118−121,154.(in Chinese) doi: 10.3969/j.issn.1671-3532.2013.03.002 [35] 谢腾, 王升, 周良云, 等. 新疆紫草AP2/ERF转录因子的电子克隆和生物信息学分析 [J]. 中国中药杂志, 2014, 39(12):2251−2257.XIE T, WANG S, ZHOU L Y, et al. In silico cloning and bioinformatics analysis of an AP2/EFR family gene from Arnebia euchroma [J]. China Journal of Chinese Materia Medica, 2014, 39(12): 2251−2257.(in Chinese) [36] 谷彦冰, 冀志蕊, 迟福梅, 等. 桃WRKY基因家族全基因组鉴定和表达分析 [J]. 遗传, 2016, 38(3):254−270.GU Y B, JI Z R, CHI F M, et al. Genome-wide identification and expression analysis of the WRKY gene family in peach [J]. Hereditas, 2016, 38(3): 254−270.(in Chinese) [37] MACKENZIE K K, COELHO L L, LÜTKEN H, et al. Phylogenomic analysis of the PEBP gene family from kalanchoë [J]. Agronomy, 2019, 9(4): 171. doi: 10.3390/agronomy9040171 [38] 吴水涵, 宋炎峰, 李蒙, 等. 染井吉野樱PEBP基因家族鉴定及生物信息学分析[J/OL]. 分子植物育种: 1-8[2022-07-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210531.1104.011.htmlWU S H, SONG Y F, LI M, et al. PEBP gene family identification and bioinformatics analysis[J/OL]. Molecular Plant Breeding: 1-8[2022-07-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210531.1104.011.html.(in Chinese) [39] 焦义然, 陈文烨, 杨帆, 等. 小麦FT基因编码蛋白结构及功能的生物信息学分析 [J]. 江西农业学报, 2018, 30(10):1−6.JIAO Y R, CHEN W Y, YANG F, et al. Bioinformatics analysis of structure and function of FT-coded protein in wheat(Triticum aestivum) [J]. Acta Agriculturae Jiangxi, 2018, 30(10): 1−6.(in Chinese) [40] 刘合霞, 刁慧玲, 舒杨, 等. 基于转录组的金花茶PEBP基因家族的鉴定及分析 [J]. 安徽农业科学, 2021, 49(13):103−107. doi: 10.3969/j.issn.0517-6611.2021.13.025LIU H X, DIAO H L, SHU Y, et al. Transcriptome-wide identification and expression profiling of PEBP gene family in Camellia nitidissima [J]. Journal of Anhui Agricultural Sciences, 2021, 49(13): 103−107.(in Chinese) doi: 10.3969/j.issn.0517-6611.2021.13.025 [41] 牛西强, 罗潇云, 康凯程, 等. 辣椒PEBP基因家族的全基因组鉴定、比较进化与组织表达分析 [J]. 园艺学报, 2021, 48(5):947−959.NIU X Q, LUO X Y, KANG K C, et al. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947−959.(in Chinese) [42] 丁静, 钱俊青. 蛋白质二级与三级结构的表征方法 [J]. 浙江化工, 2020, 51(11):49−54. doi: 10.3969/j.issn.1006-4184.2020.11.012DING J, QIAN J Q. Characterization method of protein secondary and tertiary structures [J]. Zhejiang Chemical Industry, 2020, 51(11): 49−54.(in Chinese) doi: 10.3969/j.issn.1006-4184.2020.11.012 [43] 曹晨, 马堃. 蛋白质二级结构指定 [J]. 生物信息学, 2016, 14(3):181−187. doi: 10.3969/j.issn.1672-5565.2016.03.09CAO C, MA K. Protein secondary structure assignment [J]. Chinese Journal of Bioinformatics, 2016, 14(3): 181−187.(in Chinese) doi: 10.3969/j.issn.1672-5565.2016.03.09 [44] 李明月, 杜钰, 姚晓玲, 等. 超高压处理对蛋白质功能特性的影响 [J]. 食品科技, 2018, 43(1):50−54.LI M Y, DU Y, YAO X L, et al. Effects of ultrahigh pressure processing on protein functional properties [J]. Food Science and Technology, 2018, 43(1): 50−54.(in Chinese) [45] 王超, 朱建伟, 张海仓, 等. 蛋白质三级结构预测算法综述 [J]. 计算机学报, 2018, 41(4):760−779. doi: 10.11897/SP.J.1016.2018.00760�WANG C, ZHU J W, ZHANG H C, et al. A survey on algorithms for protein tertiary structure prediction [J]. Chinese Journal of Computers, 2018, 41(4): 760−779.(in Chinese) doi: 10.11897/SP.J.1016.2018.00760�