Physiological Changes of Polygonatum cyrtonema Hua Seeds during Stratification
-
摘要:
目的 探究自然变温条件下多花黄精种子层积过程的生理变化,为多花黄精种子休眠解除及促进萌发提供理论依据和指导。 方法 将成熟的多花黄精种子进行5个月的湿沙层积,在自然变温条件下观测多花黄精种子从采后到大量萌发其间贮藏物质含量、相关酶活性以及内源激素含量变化。 结果 多花黄精种子中的纤维素含量较淀粉含量高,层积初始时分别为263.5 mg·g−1和85.4 mg·g−1,之后持续分解,为休眠和萌发提供能量。可溶性糖含量(SS)在2020-01-23及萌发后均显著上升,可溶性蛋白(SP)在2020-01-23显著上升,萌发后迅速下降。超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)酶活性在2020-01-23达到峰值。α-淀粉酶、β-淀粉酶活性与可溶性糖含量呈极显著正相关。6-磷酸葡萄糖脱氢酶(6-PGDH)活性在萌发前显著下降,萌发后显著上升,烟酰胺腺嘌呤二核苷酸激酶(NDK)酶活性则与之相反,二者呈显著负相关。茉莉酸类物质含量在层积前、中期交替升高后下降。异戊烯基腺苷(IPA)、激动素(K)、反式玉米素(tZ)、顺式玉米素(cZ)、二氢玉米素(dh-Z),吲哚-3-乙酸甲酯(ME-IAA)以及脱落酸(ABA)含量持续下降。异戊烯基腺嘌呤(IP)、反式玉米素核苷(tZR),吲哚-3-甲醛(ICA)、吲哚-3-乙酸(IAA)含量在未萌发时持续下降,萌发后快速上升。赤霉素A7(GA7)、1-氨基环丙烷羧酸(ACC)含量呈上升趋势,并在萌发后大幅上升。水杨酸含量(SA)在萌发后迅速上升。 结论 淀粉和纤维素均为多花黄精种子的主要代谢物质,保护酶、淀粉酶及SS、SP含量在层积过程中为适应环境及促进萌发不断变化,茉莉酸类、生长素类及ABA共同维持休眠, GA7和ACC促进休眠解除和萌发,ICA、IAA、IP、tZR、SA促进萌发。 Abstract:Objective Physiological changes in seeds of Polygonatum cyrtonema Hua during stratification under natural climatic conditions were investigated. Method Mature P. cyrtonema seeds were stratified in wet sand under natural climatic changes for 5 months from postharvest to massive germination. Contents of accumulated substances, related enzyme activities, and endogenous hormones in the seeds were continuously monitored. Result The seed cellulose content was higher than starch, i.e., 263.5mg·g−1 vs. 85.4mg·g−1 , in the beginning of stratification but degraded continuously to provide energy in dormancy and for germination. The content of soluble sugar (SS) increased significantly on 23-01-2020 and after germination, while that of soluble protein (SP) increased significantly on 23-01-2020 and decreased rapidly after germination. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) peaked on 23-01-2020, those of α-amylase and β-amylase correlated with the soluble sugar content, and that of glucose 6-phosphate dehydrogenase (6-PGDH) decreased significantly before germination and increased significantly afterward. In contrast, the nicotinamide adenine dinucleotide kinase (NADK) activity significantly negatively correlated with 6-PGDH . On the accumulated chemicals, jasmonates increased alternately in the period prior to and middle of stratification and then decreased; isopentenyl adenosine (IPA), kinetin (K), trans zeatin (tZ), cis zeatin (cZ), dihydrozeatin (dh-z), methyl Indole-3-acetate (ME-IAA), and abscisic acid (ABA) decreased continuously; isoopentenyl adenine (IP), trans zeatin nucleoside (tZR), indole-3-formaldehyde (ICA), and indole-3-acetic acid (IAA) decreased continuously before germination and increased rapidly after germination; gibberellin A7 (GA7) and 1-aminocyclopropane carboxylic acid (ACC) increased during stratification and rapidly after germination; and salicylic acid (SA) increased rapidly after germination. Conclusion Starch and cellulose were the main metabolites of P. cyrtonema seeds under stratification. The activities of protective enzymes and the contents of SS and SP were constantly changing to adapt to the environmental conditions in preparation for germination. Jasmonates, auxins, and ABA jointly promoted the seed dormancy, ACC and GA7 released dormancy for germination, while ICA, IAA, IP, TZR, and SA stimulated germination. -
Key words:
- Polygonatum cyrtonema Hua /
- seed /
- stratification /
- germination /
- physiology
-
表 1 样品信息
Table 1. Information on specimens
处理
Treatment取样日期/(年-月-日)
Sampling date萌发状态
Germination stateS1 2019-10-23 未萌发 No germinating S2 2019-11-23 未萌发 No germinating S3 2019-12-23 未萌发 No germinating S4 2020-01-23 未萌发 No germinating S5 2020-02-23 未萌发 No germinating S6 2020-03-23 刚萌发 Just germinating 表 2 23种目标成分测定中优化的质谱条件参数
Table 2. Optimized MS/MS parameters on 23 components
激素类型
Hormone type激素
Hormone化合物缩写
Compound
abbreviationtR/min 质谱多反应监测MRM
离子对
Ion
transition去簇电压
Declustering
potential/v碰撞能
Collision
energy/v电喷雾
Electrospray
ionization茉莉酸类
Jasmonates(±)-茉莉酸
(±)-Jasmonic acidJA 9.46 209/59 26 10 ESI− 二氢茉莉酸
Dihydrojasmonic acidH2-JA 10.30 211/59 36 11 ESI− (±)-茉莉酸-异亮氨酸
N-((-)-jasmonoyl)-S-isoleucineJA-Ile 10.74 422/130 30 10 ESI− 茉莉酸甲酯
Methyl jasmonateMe-JA 10.9 225/151 27 19 ESI+ 细胞分裂素类
Cytokinins异戊烯基腺苷
N6-(delta 2-isopentenyl)-adenineIPA 6.67 336/136 40 39 ESI+ 激动素
KinetinK 4.97 216/148 10 20 ESI+ 反式玉米素
trans-ZeatintZ 2.87 220/136 35 24 ESI+ 顺式玉米素
cis-ZeatincZ 3.57 220/136 35 24 ESI+ 二氢玉米素
DL-Dihydrozeatindh-Z 2.96 222/136 30 29 ESI+ 异戊烯基腺嘌呤
N6-isopentenyladenosineIP 5.62 204/136 40 23 ESI+ 反式玉米素核苷
Trans-zeatin-ribosidetZR 4.91 352/220 30 27 ESI+ 生长素类
Auxins吲哚-3-甲醛
Indole-3-carboxaldehydeICA 7.29 146/118 37 21 ESI+ 吲哚-3-乙酸
Indole-3-acetic acidIAA 7.13 176/130 23 22 ESI+ 吲哚-3-乙酸甲酯
Methyl 3-indolylacetateMe-IAA 9.05 190/130 33 18 ESI+ 3-吲哚丁酸
Indole-3-acetic acidIBA 8.85 204/186 46 21 ESI+ 赤霉素类
Gibberellins赤霉素A7
Gibberellin A7GA7 10.24 329/224 30 10 ESI− 赤霉素A4
Gibberellin A4GA4 10.36 331/243 30 10 ESI− 赤霉素A3
Gibberellin A3GA3 6.81 345/143 30 10 ESI− 赤霉素A1
Gibberellin A1GA1 6.86 347/273 27 10 ESI− 脱落酸
Abscisic acid脱落酸
(+)-Abscisic acidABA 8.43 263/153 24 10 ESI− 水杨酸类
Salicylic acids水杨酸
Salicylic acidSA 8.62 137/90 11 10 ESI− 水杨酸甲
Methyl salicylateMe-SA 10.31 153/97 70 21 ESI+ 氨基环丙烷羧酸
1-Aminocyclopropanecarboxylic Acid1-氨基环丙烷羧酸
1-Aminocyclopropanecarboxylic AcidACC 0.83 102/56 10 5 ESI+ 表 3 多花黄精种子层积过程贮藏物质与酶的相关性
Table 3. Correlation between accumulated substances and enzymes of P. cyrtonema seeds during stratification
指标
Index淀粉
Starch纤维素
Cellulose可溶性糖
SS可溶性蛋白
SP超氧化物歧化酶
SOD过氧化物酶
POD过氧化氢酶
CATα-淀粉酶
α-amylaseβ-淀粉酶
β-amylaseNAD激酶
NADK纤维素 Cellulose 0.574* 可溶性糖 SS −0.719** −0.362 可溶性蛋白 SP 0.197 0.162 −0.359 超氧化物歧化酶 SOD 0.412 0.283 −0.401 0.932** 过氧化物酶 POD −0.129 0.009 0.317 0.692** 0.701** 过氧化氢酶 CAT −0.464 −0.555* 0.339 0.399 0.263 0.594** α-淀粉酶 α-amylase −0.526* −0.316 0.820** −0.045 −0.133 0.527* 0.555* β-淀粉酶 β-amylase −0.668** −0.329 0.896** −0.531* −0.577* 0.152 0.242 0.743** NADK NAD激酶 0.221 0.163 −0.691** 0.704** 0.606** 0.060 0.023 −0.523* −0.778** 6-磷酸葡萄糖脱氢酶 6-PGDH 0.247 −0.318 −0.056 −0.537* −0.376 −0.350 −0.119 −0.091 0.137 −0.538* *表示在0.05水平显著;**表示在0.01水平极显著。
* indicates significant at P<0.05; ** indicates extremely significant at P<0.01. -
[1] 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. [2] 任洪民, 邓亚羚, 张金莲, 等. 药用黄精炮制的历史沿革、化学成分及药理作用研究进展 [J]. 中国中药杂志, 2020, 45(17):4163−4182. doi: 10.19540/j.cnki.cjcmm.20200522.601REN H M, DENG Y L, ZHANG J L, et al. Research progress on processing history evolution, chemical components and pharmacological effects of Polygonati Rhizoma [J]. China Journal of Chinese Materia Medica, 2020, 45(17): 4163−4182.(in Chinese) doi: 10.19540/j.cnki.cjcmm.20200522.601 [3] 姜程曦, 洪涛, 熊伟. 黄精产业发展存在的问题及对策研究 [J]. 中草药, 2015, 46(8):1247−1250. doi: 10.7501/j.issn.0253-2670.2015.08.028JIANG C X, HONG T, XIONG W. Study on problems and countermeasures in development of Polygonati Rhizoma industry [J]. Chinese Traditional and Herbal Drugs, 2015, 46(8): 1247−1250.(in Chinese) doi: 10.7501/j.issn.0253-2670.2015.08.028 [4] 祝明珠, 俞年军, 史素影, 等. 多花黄精种子结构与休眠及萌发的关系研究 [J]. 种子, 2020, 39(3):7−12,19.ZHU M Z, YU N J, SHI S Y, et al. Study on the relationship between seed structure and germination of Polygonatum cyrtonema Hua [J]. Seed, 2020, 39(3): 7−12,19.(in Chinese) [5] 陈怡, 柳雪晨, 陈松树, 等. 多花黄精种子萌发过程的形态和解剖研究 [J]. 种子, 2020, 39(2):5−10.CHEN Y, LIU X C, CHEN S S, et al. Morphological and anatomical studies during seed germination of Polygonatum cyrtonema Hua [J]. Seed, 2020, 39(2): 5−10.(in Chinese) [6] 王宏迪. 黄精种子胚乳细胞特异结构与种子休眠相关性研究[D]. 杨凌: 西北农林科技大学, 2018WANG H D. The relative study of seeds dormancy and the specific structure of the endosperm cells of rhizoma polygonati seeds[D]. Yangling: Northwest A & F University, 2018. (in Chinese) [7] 李询, 董诚明, 邢冰, 等. 多花黄精种子萌发抑制物特性研究 [J]. 种子, 2020, 39(6):108−110.LI X, DONG C M, XING B, et al. Study on the characteristic of seed germination inhibitors of Polygonatum cyrtonema Hua [J]. Seed, 2020, 39(6): 108−110.(in Chinese) [8] 刘保财, 黄颖桢, 赵云青, 等. 不同处理对多花黄精种子的影响 [J]. 福建农业学报, 2015, 30(5):469−472. doi: 10.3969/j.issn.1008-0384.2015.05.009LIU B C, HUANG Y Z, ZHAO Y Q, et al. Effect of varied treatments on germination of Polygonatum cyrtonema Hua seeds [J]. Fujian Journal of Agricultural Sciences, 2015, 30(5): 469−472.(in Chinese) doi: 10.3969/j.issn.1008-0384.2015.05.009 [9] 陈怡, 杨赋祺, 陈松树, 等. 多花黄精种子萌发过程的内源激素含量变化研究 [J]. 中药材, 2020, 43(3):523−527. doi: 10.13863/j.issn1001-4454.2020.03.002CHEN Y, YANG F Q, CHEN S S, et al. Study on the changes of endogenous hormones contents in Polygonatum cyrtonema seed germination [J]. Journal of Chinese Medicinal Materials, 2020, 43(3): 523−527.(in Chinese) doi: 10.13863/j.issn1001-4454.2020.03.002 [10] 王占红, 蒋花, 王瑾, 等. 不同沙藏处理对黄精种子内贮藏物质及萌发的影响 [J]. 种子, 2012, 31(2):91−93. doi: 10.3969/j.issn.1001-4705.2012.02.024WANG Z H, JIANG H, WANG J, et al. Effect of sand storage on storage substance content and germination of Polygonatum sibiricum red. seeds [J]. Seed, 2012, 31(2): 91−93.(in Chinese) doi: 10.3969/j.issn.1001-4705.2012.02.024 [11] 陈松树, 赵致, 刘红昌, 等. 多花黄精种子育苗技术研究 [J]. 中药材, 2017, 40(5):1035−1038. doi: 10.13863/j.issn1001-4454.2017.05.006CHEN S S, ZHAO Z, LIU H C, et al. Study on seedling technology of Polygonatum Sibiricum Red. [J]. Journal of Chinese Medicinal Materials, 2017, 40(5): 1035−1038.(in Chinese) doi: 10.13863/j.issn1001-4454.2017.05.006 [12] 陈怡. 多花黄精种子和种茎萌发出苗的形态及生理研究[D]. 贵阳: 贵州大学, 2020.CHEN Y. Morphological and physiological study on germination and emergence of Polygonatum cyrtonema Hua seed and seed stem[D]. Guiyang: Guizhou University, 2020. (in Chinese) [13] 成京晋, 达布希拉图, 刘佳, 等. 多花黄精种子后熟过程生理研究 [J]. 种子, 2018, 37(10):31−35. doi: 10.16590/j.cnki.1001-4705.2018.10.031CHENG J J, DABUXILATU, LIU J, et al. Physiological research on the after-ripening process of the Polygonatum cyrtonema Hua seed [J]. Seed, 2018, 37(10): 31−35.(in Chinese) doi: 10.16590/j.cnki.1001-4705.2018.10.031 [14] ŠIMURA J, ANTONIADI I, ŠIROKÁ J, et al. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics [J]. Plant Physiology, 2018, 177(2): 476−489. doi: 10.1104/pp.18.00293 [15] 张武君, 刘保财, 赵云青, 等. 金花茶对低温胁迫的生理响应及耐寒性分析 [J]. 核农学报, 2020, 34(2):401−408. doi: 10.11869/j.issn.100-8551.2020.02.0401ZHANG W J, LIU B C, ZHAO Y Q, et al. Physiological responses and cold resistance analysis of Camellia nitidissima Chi under low-temperature stress [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 401−408.(in Chinese) doi: 10.11869/j.issn.100-8551.2020.02.0401 [16] 许英, 陈建华, 朱爱国, 等. 低温胁迫下植物响应机理的研究进展 [J]. 中国麻业科学, 2015, 37(1):40−49. doi: 10.3969/j.issn.1671-3532.2015.01.009XU Y, CHEN J H, ZHU A G, et al. Research progress on response mechanism of plant under low temperature stress [J]. Plant Fiber Sciences in China, 2015, 37(1): 40−49.(in Chinese) doi: 10.3969/j.issn.1671-3532.2015.01.009 [17] 赵永华, 杨世林, 刘惠卿, 等. 西洋参种子休眠解除与磷酸戊糖途径关系的研究 [J]. 中草药, 2001, 32(3):259−261. doi: 10.3321/j.issn:0253-2670.2001.03.036ZHAO Y H, YANG S L, LIU H Q, et al. Relationship between phosphopentose pathway and seed dormancy releasing of Panax quinquef olius [J]. Chinese Traditional and Herbal Drugs, 2001, 32(3): 259−261.(in Chinese) doi: 10.3321/j.issn:0253-2670.2001.03.036 [18] 朱冬雪, 顾采琴, 陶华, 等. 番茄果实采后NAD激酶活性与活性氧代谢的关系 [J]. 园艺学报, 2007, 34(6):1431−1436. doi: 10.3321/j.issn:0513-353x.2007.06.014ZHU D X, GU C Q, TAO H, et al. Relationship between NAD kinase and active oxygen during ripening and senescence of postharvested tomato fruit [J]. Acta Horticulturae Sinica, 2007, 34(6): 1431−1436.(in Chinese) doi: 10.3321/j.issn:0513-353x.2007.06.014 [19] 冯孟杰, 徐恒, 张华, 等. 茉莉素调控植物生长发育的研究进展 [J]. 植物生理学报, 2015, 51(4):407−412.FENG M J, XU H, ZHANG H, et al. Recent progress in jasmonates regulation of plant growth and development [J]. Plant Physiology Journal, 2015, 51(4): 407−412.(in Chinese) [20] SUBBIAH V, REDDY K J. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis [J]. Journal of Biosciences, 2010, 35(3): 451−458. doi: 10.1007/s12038-010-0050-2 [21] TYAGI S, KUMAR S. Exogenous supply of IAA, GA and cytokinin to salinity stressed seeds of chickpea improve the seed germination and seedling growth [J]. International Journal of Plant Sciences, 2016, 11(1): 88−92. doi: 10.15740/HAS/IJPS/11.1/88-92 [22] 宋松泉, 刘军, 黄荟, 等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制 [J]. 中国科学:生命科学, 2020, 50(6):599−615. doi: 10.1360/SSV-2019-0289SONG S Q, LIU J, HUANG H, et al. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy [J]. Scientia Sinica (Vitae), 2020, 50(6): 599−615.(in Chinese) doi: 10.1360/SSV-2019-0289 [23] 宋松泉, 刘军, 徐恒恒, 等. 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制 [J]. 中国农业科学, 2020, 53(5):857−873. doi: 10.3864/j.issn.0578-1752.2020.05.001SONG S Q, LIU J, XU H H, et al. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination [J]. Scientia Agricultura Sinica, 2020, 53(5): 857−873.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.05.001 [24] 夏方山, 毛培胜, 闫慧芳, 等. 水杨酸对植物种子及幼苗抗逆性的影响 [J]. 草业科学, 2014, 31(7):1367−1373.XIA F S, MAO P S, YAN H F, et al. Effects of salicylic acid on stress resistance of seeds and seedling [J]. Pratacultural Science, 2014, 31(7): 1367−1373.(in Chinese) [25] BURG S P, BURG E A. Biosynthesis of ethylene [J]. Nature, 1964, 203: 869−870. doi: 10.1038/203869a0 [26] 张玉翠. 黄精种子的萌发特性及生理研究[D]. 杨凌: 西北农林科技大学, 2011.ZHANG Y C. Study on the germination charateristics and physiologies of Polygonatum sibiricum Red. [D]. Yangling: Northwest A & F University, 2011. (in Chinese) [27] 程秋香. 黄精种子胚乳弱化机制的研究[D]. 杨凌: 西北农林科技大学, 2016.CHENG Q X. Studies on endosperm weakening mechanism of Polygonatum sibiricum Red. Seeds[D]. Yangling: Northwest A & F University, 2016. (in Chinese) [28] WANG L, YAO L N, HAO X Y, et al. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant [J]. Environmental and Experimental Botany, 2019, 160: 45−58. doi: 10.1016/j.envexpbot.2018.11.011 [29] BUETLER T M, KRAUSKOPF A, RUEGG U T. Role of superoxide as a signaling molecule [J]. Physiology, 2004, 19(3): 120−123. doi: 10.1152/nips.01514.2003 [30] LISZKAY A, VAN DER ZALM E, SCHOPFER P. Production of reactive oxygen intermediates (O2 ˙−, H2O2, and ˙OH) by maize roots and their role in wall loosening and elongation growth [J]. Plant Physiology, 2004, 136(2): 3114−3123. doi: 10.1104/pp.104.044784 [31] KANG J H, WANG L, GIRI A, et al. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta [J]. The Plant Cell, 2006, 18(11): 3303−3320. doi: 10.1105/tpc.106.041103 [32] PAN J J, HU Y R, WANG H P, et al. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis [J]. The Plant Cell, 2020, 32(12): 3846−3865. doi: 10.1105/tpc.19.00838 [33] WANG Y F, HOU Y X, QIU J H, et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa) [J]. New Phytologist, 2020, 228(4): 1336−1353. doi: 10.1111/nph.16774 [34] NORASTEHNIA A, SAJEDI R, NOJAVAN-ASGHARI M. Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): Effect on α-amylase activity and ethylene production [J]. Gen Appl Plant Physiol, 2007, 33(1-2): 13−23. [35] ZALEWSKI K, NITKIEWICZ B, LAHUTA L B, et al. Effect of jasmonic acid-methyl ester on the composition of carbohydrates and germination of yellow lupine (Lupinus luteus L. ) seeds [J]. Journal of Plant Physiology, 2010, 167(12): 967−973. doi: 10.1016/j.jplph.2010.01.020 [36] KIEBER J J, SCHALLER G E. Cytokinin signaling in plant development [J]. Development (Cambridge, England), 2018, 145(4): dev149344. doi: 10.1242/dev.149344 [37] GAJDOŠOVÁ S, SPÍCHAL L, KAMÍNEK M, et al. Distribution, biological activities, metabolism, and the conceivable function of Cis-Zeatin-type cytokinins in plants [J]. Journal of Experimental Botany, 2011, 62(8): 2827−2840. doi: 10.1093/jxb/erq457 [38] LIU X, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485−15490. doi: 10.1073/pnas.1304651110 [39] 马焕普. 用GC-MS检测苹果种子层积过程中内源MeJA、GA3、GA4和GA7的变化 [J]. 植物生理学报, 1996, 22(1):81−86.MA H P. Changes in content of endogenous methyl jasmonate and gibberellins A3, A4 and A7 measured by gas chromtograph-mass spectrometry during stratification of apple (Malus pumila L. ) seeds [J]. Acta Phytophisiologica Sinica, 1996, 22(1): 81−86.(in Chinese) [40] KȨPCZYŃSKI J. Ethylene-dependent action of gibberellin in seed germination of Amaranthus caudatus [J]. Physiologia Plantarum, 1986, 67(4): 584−587. doi: 10.1111/j.1399-3054.1986.tb05059.x [41] AHAMMED G J, LI Y, CHENG Y, et al. Abscisic acid and gibberellins act antagonistically to mediate epigallocatechin-3-gallate-retarded seed germination and early seedling growth in tomato [J]. Journal of Plant Growth Regulation, 2020, 39(4): 1414−1424. doi: 10.1007/s00344-020-10089-1 [42] 王尧, 李振华, 彭忠华. 烟草种子后熟对GA和ABA代谢与信号基因表达及萌发的影响 [J]. 分子植物育种, 2021, 19(7):2312−2319. doi: 10.13271/j.mpb.019.002312WANG Y, LI Z H, PENG Z H. Effects of seed after-ripening on GA and ABA metabolism, signal gene expression and germination in tobacco [J]. Molecular Plant Breeding, 2021, 19(7): 2312−2319.(in Chinese) doi: 10.13271/j.mpb.019.002312 [43] WANG Y, HU J, QIN G C, et al. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds [J]. Botany, 2012, 90(9): 845−855. doi: 10.1139/b2012-055 [44] LIU J, LI L Y, YUAN F, et al. Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress [J]. Plant Signaling & Behavior, 2019, 14(10): e1644595. [45] GUO B, LIU C, LIANG Y, et al. Salicylic acid signals plant defence against cadmium toxicity [J]. Int J Mol Sci, 2019, 20(12): E2960. doi: 10.3390/ijms20122960 [46] 葛娜, 杨玲, 陈军文. 不同浓度赤霉素和脱落酸对顽拗性三七种子后熟种胚发育和内源激素的影响 [J]. 应用与环境生物学报, 2020, 26(3):574−581.GE N, YANG L, CHEN J W. Effects of varying gibberellin and abscisic acid levels on embryo development and endogenous hormones in recalcitrant Panax notoginseng seeds during the after-ripening process [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(3): 574−581.(in Chinese) [47] 员丽娟, 张卫娜, 陈文利. 水杨酸与水杨酸甲酯对拟南芥生长初期的影响 [J]. 生物物理学报, 2009, 25(S1):421.YUAN L J, ZHANG W N, CHEN S L. Effects of salicylic acid and methyl salicylate on the early growth of Arabidopsis thaliana [J]. Acta Biophysica Sinica, 2009, 25(S1): 421.(in Chinese) [48] HERMANN K, MEINHARD J, DOBREV P, et al. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L. ): A comparative study of fruits and seeds [J]. Journal of Experimental Botany, 2007, 58(11): 3047−3060. doi: 10.1093/jxb/erm162 [49] KHAN A A, HUANG X L. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic acid in lettuce seeds exposed to salinity stress [J]. Plant Physiology, 1988, 87(4): 847−852. doi: 10.1104/pp.87.4.847 [50] 焦劼, 陈黎明, 张巧媚, 等. 黄精种子质量与外源生长调节物质SNP、ETH对种子萌芽的影响 [J]. 时珍国医国药, 2016, 27(5):1211−1213.JIAO J, CHEN L M, ZHANG Q M, et al. Effects of seed quality and exogenous growth- regulating substances SNP and ETH on seed germination of Polygonatum sibiricum Red. [J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(5): 1211−1213.(in Chinese)