Effects of modified polyaspartic acid urea basal application in paddy field
-
摘要:
目的 探究基施不同分子量改性聚天门冬氨酸(PASP)尿素对水稻产量、氮肥利用率及田面水氮素变化的影响。 方法 以辽宁省水稻高产区辽河三角洲为试验区域,基于减量施氮情况下,将不同分子量改性PASP与尿素进行复配,通过大田试验研究基施不同分子量改性聚天尿素对稻田田面水氮素动态变化、水稻氮吸收利用及生长影响;利用灰色关联度法,综合评价基施不同分子量改性聚天尿素在稻田中的应用效果。 结果 与大颗粒尿素处理相比,不同分子量改性聚天尿素处理降低了田面水氮素浓度,尤其在施基肥后第3天,分子量7500、10000和12500的改性聚天尿素处理田面水NH4+-N浓度较大颗粒尿素处理显著降低了24.54%~56.66%。其中分子量10000的改性聚天尿素处理的田面水NH4+-N浓度较分子量7500、12500和14700 的改性聚天尿素处理显著降低了36.84%~45.67%。施用分子量10000的改性聚天尿素能促进水稻生长,提高养分吸收,使水稻产量增加8.22%,籽粒、秸秆氮吸收量显著增加36.47%和62.39%,氮肥表观利用率提高38.31个百分点。 结论 通过对以上各指标进行综合评价,表明基施改性聚天尿素效果优于大颗粒尿素,且尿素添加改性PASP的最佳分子量为10000。推荐辽河三角洲稻区应用分子量10000的改性聚天尿素。 Abstract:Objective In order to evaluate the effects of modified polyaspartic acid (PASP) urea with different molecular weights on rice yield, nitrogen use efficiency and nitrogen(N)concentrations in the surface water of paddy fields. Method The Liaohe River delta, a rice-producing area in Liaoning Province, was selected as the experimental area, Modified PASP with different molecular weights was combined with urea. Then the effects of modified PASP urea with different molecular weights on N concentrations in the paddy field ponding water, rice growth, N uptake and utilization were studied under the condition of reduced nitrogen application. And the effects of basal modified PASP urea application with different molecular weights in paddy field were comprehensively evaluated by Grey Relational Analysis. Result The results showed that modified PASP urea treatment tests decreased the N concentrations in the surface water compared with the large particle urea treatment test. In particular, NH4+-N concentrations in the surface water in 7500mw, 10000mw and 12500mw modified PASP urea treatments test were significantly reduced by 20.23%~56.66% compared with large particle urea treatment test on the third day after basal fertilization. Among them, NH4+-N concentrations in the surface water in 10000 mw modified PASP urea treatment test was significantly lower (36.84%~45.67%) than 7500,12500 and 14700 mw modified PASP urea treatment tests. The application of 10000 mw modified PASP urea could significantly promote rice growth, nutrient absorption, and increase yield, with a 8.22% higher yield, a 36.47% higher N uptake in grain, a 62.39% higher N absorption in straw, a 38.31 percentage point higher of N use-efficiency, compared to the control. Conclusion Considering rice yield, nitrogen uptake, nitrogen use efficiency and N concentrations in the surface water, basal application of modified PASP urea treatment based on reduced nitrogen application was better than the treatment using large particle urea. Therefore, urea mixed with 10000 mw modified PASP urea is recommended to be used in Liaohe Delta rice region. -
Key words:
- rice /
- modified polyaspartic acid /
- urea /
- grey incidence analysis
-
表 1 水稻株高、有效分蘖数及产量
Table 1. Rice height, effective tiller number and yield
处理
Treatments有效分蘖数
Productive tillers/(穗·株−1)株高
Height/cm秸秆产量
Straw yield/(kg·hm−2)籽粒产量
Grain yield/(kg·hm−2)CK 15.67±2.08 b 79.17±1.44 c 5356.2 ± 430.2 c 6791.3 ±626.5 c T1 23.33±2.08 a 91.50±2.18 a 9287.5±841.5 b 11682.6±413.9 b T2 23.67±2.08 a 84.07±2.31 bc 9455.2±972.9 b 11822.1±697.4 b T3 24.67±2.52 a 86.47±3.68 ab 10929.2±907.0 a 12642.4±114.7 a T4 23.33±2.08 a 83.73±4.03 bc 9263.2b±303.8 b 11412.8±334.3 b T5 22.67±1.53 a 83.67±4.25 bc 9035.8±162.6 b 11353.2±137.5 b 同列数据后不同小写字母表示处理间差异显著(P<0.05)。
The different lowercase letters after data in a column indicate significant differences among treatments at P<0.05 levels.表 2 应用效果综合评价排序
Table 2. Comprehensive evaluation sorting of application effect
处理
Treatments关联系数 Correlation coefficients 综合指标关联度
Correlation degree
of comprehensive
index排序
Sorting田面水
NH4+-N峰值
NH4+-N peak in
surface water田面水
TN峰值
TN peak in
surface water植株
生物量
Biomass of
plant植株氮
累积吸收量
N uptake of
plant氮肥
表观利用率
Fertilizer N use
efficiencyT1 0.3333 0.5138 0.7196 0.4785 0.3482 0.4787 5 T2 0.3651 0.8766 0.6852 0.6865 0.6765 0.6580 2 T3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 T4 0.3323 0.8370 0.6330 0.6039 0.5838 0.5980 3 T5 0.3169 0.6204 0.6108 0.5507 0.3964 0.4990 4 单指标关联度
Correlation degree
of single index0.4695 0.7696 0.7297 0.6639 0.6010 — — -
[1] 曾靖, 常春华, 王雅鹏. 基于粮食安全的我国化肥投入研究 [J]. 农业经济问题, 2010, 31(5):66−70,111. doi: 10.13246/j.cnki.iae.2010.05.007ZENG J, CHANG C H, WANG Y P. Study on the fertilizer inputs based on China’s food security [J]. Issues in Agricultural Economy, 2010, 31(5): 66−70,111.(in Chinese) doi: 10.13246/j.cnki.iae.2010.05.007 [2] 朱兆良, 金继运. 保障我国粮食安全的肥料问题 [J]. 植物营养与肥料学报, 2013, 19(2):259−273. doi: 10.11674/zwyf.2013.0201ZHU Z L, JIN J Y. Fertilizer use and food security in China [J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259−273.(in Chinese) doi: 10.11674/zwyf.2013.0201 [3] 王激清, 马文奇, 江荣风, 等. 我国水稻、小麦、玉米基肥和追肥用量及比例分析 [J]. 土壤通报, 2008, 39(2):329−333. doi: 10.3321/j.issn:0564-3945.2008.02.024WANG J Q, MA W Q, JIANG R F, et al. Analysis about amount and ratio of basal fertilizer and topdressing fertilizer on rice, wheat, maize in China [J]. Chinese Journal of Soil Science, 2008, 39(2): 329−333.(in Chinese) doi: 10.3321/j.issn:0564-3945.2008.02.024 [4] 程凤娴, 官利兰, 邓兰生, 等. 聚天门冬氨酸对玉米生长的影响 [J]. 安徽农业科学, 2015, 43(4):105−106,139. doi: 10.3969/j.issn.0517-6611.2015.04.036CHENG F X, GUAN L L, DENG L S, et al. Effects of polyaspartic acid on maize growth [J]. Journal of Anhui Agricultural Sciences, 2015, 43(4): 105−106,139.(in Chinese) doi: 10.3969/j.issn.0517-6611.2015.04.036 [5] 杨晋辉, 刘泰, 陈艳雪, 等. 聚天门冬氨酸/盐的合成、改性及应用研究进展 [J]. 材料导报, 2018, 32(11):1852−1862. doi: 10.11896/j.issn.1005-023X.2018.11.012YANG J H, LIU T, CHEN Y X, et al. Synthesis, modification and application of polyaspartic acid/salt: The state-of-art technological advances [J]. Materials Review, 2018, 32(11): 1852−1862.(in Chinese) doi: 10.11896/j.issn.1005-023X.2018.11.012 [6] 柳建良, 崔英德, 尹国强, 等. 聚天门冬氨酸的合成及其在农业上的应用 [J]. 仲恺农业技术学院学报, 2008, 21(2):52−56.LIU J L, CUI Y D, YIN G Q, et al. Progress in the synthesis and agricultural application of polyaspartic acid [J]. Journal of Zhongkai University of Agriculture and Technology, 2008, 21(2): 52−56.(in Chinese) [7] 黄启亮, 韩广泉, 侯红燕, 等. 土壤肥料增效剂—聚天门冬氨酸研究现状及应用前景 [J]. 农村经济与科技, 2015, 26(4):62−63. doi: 10.3969/j.issn.1007-7103.2015.04.025HUANG Q L, HAN G Q, HOU H Y, et al. Research status and application prospect of soil fertilizer synergist-polyaspartic acid [J]. Rural Economy and Science-Technology, 2015, 26(4): 62−63.(in Chinese) doi: 10.3969/j.issn.1007-7103.2015.04.025 [8] 杜中军, 杨浩, 王树昌, 等. 农用聚天门冬氨酸同源多肽研究进展 [J]. 热带作物学报, 2011, 32(12):2381−2384. doi: 10.3969/j.issn.1000-2561.2011.12.037DU Z J, YANG H, WANG S C, et al. Advance of homologous polypeptides polyaspartic acids for agriculture [J]. Chinese Journal of Tropical Crops, 2011, 32(12): 2381−2384.(in Chinese) doi: 10.3969/j.issn.1000-2561.2011.12.037 [9] 冷一欣, 韶晖, 蒋俊杰, 等. 肥料增效剂聚天冬氨酸的应用效果研究 [J]. 安徽农业科学, 2002, 30(3):412−413. doi: 10.3969/j.issn.0517-6611.2002.03.047LENG Y X, SHAO H, JIANG J J, et al. Study on poly as fertilizer synergist [J]. Journal of Anhui Agricultural Sciences, 2002, 30(3): 412−413.(in Chinese) doi: 10.3969/j.issn.0517-6611.2002.03.047 [10] KINNERSLEY A M, KOSKAN L P, STROM D J, et al. Method for more efficient uptake of plant growth nutrients: US5593947[P]. 1997-01-14. [11] 胡志光, 王昕, 张玉玲, 等. 改性聚天冬氨酸研究最新进展 [J]. 应用化工, 2014, 43(2):360−362. doi: 10.16581/j.cnki.issn1671-3206.2014.02.017HU Z G, WANG X, ZHANG Y L, et al. Latest research development of modified polyaspartic acid [J]. Applied Chemical Industry, 2014, 43(2): 360−362.(in Chinese) doi: 10.16581/j.cnki.issn1671-3206.2014.02.017 [12] 徐嘉翼, 牛世伟, 隋世江, 等. 聚天门冬氨酸/盐对水稻田面水氮素变化及养分利用的影响 [J]. 农业环境科学学报, 2019, 38(8):1696−1703. doi: 10.11654/jaes.2019-0229XU J Y, NIU S W, SUI S J, et al. Effects of polyaspartic-acid/salt on nitrogen loss from paddy surface water and nutrients utilization [J]. Journal of Agro-Environment Science, 2019, 38(8): 1696−1703.(in Chinese) doi: 10.11654/jaes.2019-0229 [13] 陈倩, 李洪娜, 门永阁, 等. 不同聚天冬氨酸水平对盆栽平邑甜茶幼苗生长及15N-尿素利用与损失的影响 [J]. 水土保持学报, 2013, 27(1):126−129,135.CHEN Q, LI H N, MEN Y G, et al. Effects on the growth of potted Malus hupehensis Rehd. seedlings, utilization and loss of 15N-urea under different supply levels of polyaspartic acid [J]. Journal of Soil and Water Conservation, 2013, 27(1): 126−129,135.(in Chinese) [14] 谢方淼, 李东坡, 李健强, 等. 聚天冬氨酸尿素对土壤微生物量碳、氮的影响 [J]. 中国土壤与肥料, 2011(4):8−12. doi: 10.3969/j.issn.1673-6257.2011.04.003XIE F M, LI D P, LI J Q, et al. Effects of polyaspartic urea(PASP-Urea) on soil microbial biomass carbon and nitrogen under incubation and pot experiment [J]. Soil and Fertilizer Sciences in China, 2011(4): 8−12.(in Chinese) doi: 10.3969/j.issn.1673-6257.2011.04.003 [15] 雷全奎, 杨小兰, 马雯场, 等. 聚天门冬氨酸对土壤理化性状的影响 [J]. 陕西农业科学, 2007, 53(3):75−76. doi: 10.3969/j.issn.0488-5368.2007.03.025LEI Q K, YANG X L, MA W C, et al. Effect of polyaspartic acid on soil physical and chemical properties [J]. Shaanxi Journal of Agricultural Sciences, 2007, 53(3): 75−76.(in Chinese) doi: 10.3969/j.issn.0488-5368.2007.03.025 [16] 杜中军, 杨浩, 王永造, 等. 聚天门冬氨酸同源多肽的水稻产量效应和磷素营养吸收效应研究 [J]. 现代农业科技, 2012(18):12−13,15. doi: 10.3969/j.issn.1007-5739.2012.18.002DU Z J, YANG H, WANG Y Z, et al. Effects on yield and Phosphorus nutrition absorbing for rice using homologous polypeptides of polyaspartic acids [J]. Modern Agricultural Science and Technology, 2012(18): 12−13,15.(in Chinese) doi: 10.3969/j.issn.1007-5739.2012.18.002 [17] 侯晓娜. 黄腐酸和聚天冬氨酸对蔬菜氮素吸收及肥料氮转化的影响[D]. 北京: 中国农业科学院, 2013.HOU X N. Effects of fulvic acid and polyaspartic acid on nitrogen uptake of vegetables and transformation of fertilizer nitrogen[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) [18] 张琳, 左强, 邹国元. 施用不同水平聚天门冬氨酸对油菜生长的影响 [J]. 黑龙江农业科学, 2013(12):27−29. doi: 10.3969/j.issn.1002-2767.2013.12.008ZHANG L, ZUO Q, ZOU G Y. Effects of polyaspartic acid with different levels on growth of Brassica campestris L [J]. Heilongjiang Agricultural Sciences, 2013(12): 27−29.(in Chinese) doi: 10.3969/j.issn.1002-2767.2013.12.008 [19] 唐会会, 许艳丽, 王庆燕, 等. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制 [J]. 作物学报, 2019, 45(3):431−442. doi: 10.3724/SP.J.1006.2019.83056TANG H H, XU Y L, WANG Q Y, et al. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China [J]. Acta Agronomica Sinica, 2019, 45(3): 431−442.(in Chinese) doi: 10.3724/SP.J.1006.2019.83056 [20] 郭明海. 尿素增效剂聚天门冬氨酸的分子量及其分布测定 [J]. 大氮肥, 2006, 29(1):29−31. doi: 10.3969/j.issn.1002-5782.2006.01.009GUO M H. Measurement of absolute molecular weight and its distribution of polyaspartic acid as urea synergic agent [J]. Large Scale Nitrogenous Fertilizer Industry, 2006, 29(1): 29−31.(in Chinese) doi: 10.3969/j.issn.1002-5782.2006.01.009 [21] 张弓长, 蔡虎铭, 钱程, 等. 不同配方增效尿素对玉米生长及产量的影响 [J]. 安徽农业科学, 2016, 44(34):20−22. doi: 10.3969/j.issn.0517-6611.2016.34.008ZHANG G C, CAI H M, QIAN C, et al. Effects of different synergistic urea on the growth and yield of maize [J]. Journal of Anhui Agricultural Sciences, 2016, 44(34): 20−22.(in Chinese) doi: 10.3969/j.issn.0517-6611.2016.34.008 [22] 王娜, 徐嘉翼, 张鑫, 等. 聚天门冬氨酸尿素对水稻产量及田面水氮素变化的综合影响 [J]. 农业资源与环境学报, 2021, 38(1):96−103. doi: 10.13254/j.jare.2020.0072WANG N, XU J Y, ZHANG X, et al. Effects of polyaspartic acid urea on rice yield and nitrogen concentrations in paddy field ponding water [J]. Journal of Agricultural Resources and Environment, 2021, 38(1): 96−103.(in Chinese) doi: 10.13254/j.jare.2020.0072 [23] 巨晓棠. 氮肥有效率的概念及意义: 兼论对传统氮肥利用率的理解误区 [J]. 土壤学报, 2014, 51(5):921−933.JU X T. The concept and meanings of nitrogen fertilizer availability ratio-discussing misunderstanding of traditional nitrogen use efficiency [J]. Acta Pedologica Sinica, 2014, 51(5): 921−933.(in Chinese) [24] 邓聚龙. 灰色系统基本方法[M]. 武汉: 华中工学院出版社, 1987. [25] 成大明, 陈强, 朱爱萍, 等. 聚天冬氨酸及其衍生物的研究进展 [J]. 材料导报, 2002, 16(7):60−63. doi: 10.3321/j.issn:1005-023X.2002.07.019CHENG D M, CHEN Q, ZHU A P, et al. Progress in research on poly(aspartic acid) and its derivatives [J]. Materials Review, 2002, 16(7): 60−63.(in Chinese) doi: 10.3321/j.issn:1005-023X.2002.07.019 [26] 张康宁. 氮素管理对稻田氮素迁移转化及水稻生长的影响研究[D]. 金华: 浙江师范大学, 2019.ZHANG K N. Study on the nitrogen transfermation and rice growth under different nitrogen management methods in the rice field[D]. Jinhua: Zhejiang Normal University, 2019. (in Chinese) [27] 宫亮, 隽英华, 王建忠, 等. 盘锦地区稻田田面水氮素动态变化及化学氮肥投入阈值研究 [J]. 农业资源与环境学报, 2013, 30(6):96−100. doi: 10.3969/j.issn.1005-4944.2013.06.020GONG L, JUAN Y H, WANG J Z, et al. Variations of nitrogen in surface water body of a paddy field and input threshold of chemical N fertilizer in Panjin City, China [J]. Journal of Agricultural Resources and Environment, 2013, 30(6): 96−100.(in Chinese) doi: 10.3969/j.issn.1005-4944.2013.06.020 [28] OGAWA S, VALENCIA M O, ISHITANI M, et al. Root system architecture variation in response to different NH4 [J]. Acta Physiologiae Plantarum, 2014, 36(9): 2361−2372. doi: 10.1007/s11738-014-1609-6 [29] 王晓琪, 姚媛媛, 陈宝成, 等. 淹水条件硝态氮和铵态氮配施对水稻生长与土壤养分的影响 [J]. 土壤, 2020, 52(2):254−261. doi: 10.13758/j.cnki.tr.2020.02.005WANG X Q, YAO Y Y, CHEN B C, et al. Effects of combined application of nitrate and ammonium on rice growth and soil nutrients under flooding conditions [J]. Soils, 2020, 52(2): 254−261.(in Chinese) doi: 10.13758/j.cnki.tr.2020.02.005