Identification and Characterization of Phosphate-solubilizing Endophytes in Coix lacryma-jobi L.
-
摘要:
目的 筛选具有溶磷能力的薏苡内生细菌并明确其类型,为后续研制生物菌肥提供优良菌株资源。 方法 以播种25 d的薏苡幼苗为试验材料,采用研磨稀释涂板法从薏苡的根、茎、叶中分离筛选具有溶磷能力的薏苡内生菌,探索该类菌溶解有机磷、无机磷、分泌磷酸酶的能力;通过盆栽试验探究溶磷内生菌对薏苡幼苗的促生长作用。 结果 筛选到溶解有机磷细菌8株,溶解无机磷细菌5株。其中,编号为R24的菌株溶解有机磷能力最强,摇瓶5 d后,上清液可溶性磷含量为37.20 mg·L−1;编号为L21的菌株溶解无机磷能力最强,摇瓶5 d后,上清液可溶性磷含量为62.93 mg·L−1。2株溶磷菌及等比例混合菌液能够促进盆栽薏苡的株高、茎粗、分蘖数,促生长能力从大到小为:L21>R24>混合菌液[V(R24)∶V(L21)=1∶1]。通过16S rDNA序列鉴定,R24为短小芽孢杆菌,L21为贝莱斯芽孢杆菌。 结论 溶磷菌L21和R24对薏苡生长有显著促进作用。 Abstract:Objective Screening bacteria with phosphate-solubilizing ability in Coix were identified and provide excellent strain resource for bio-fertilization agent. Methods Endophytic bacteria were isolated and purified from specimens the roots, stems, and leaves of 25-d-old seedlings of Coix lacryma-jobi L. Abilities of the isolates in dissolving organophosphate and inorganic phosphate as well as in secreting phosphatase were determined. In a pot experiment, effects of two selected isolates on the growth of Coix seedlings were examined. Results Eight strains of bacteria capable of dissolving organophosphate and 5 of degrading inorganic phosphate were isolated. In the 5-d culture supernatants, the highest concentration of phosphorous converted from organophosphate at 37.20 mg·L−1 was reached by R24, and that from inorganic phosphate at 62.93 mg·L−1 by L21. The enhancing effects on plant height, stem girth, and tillering number of the potted Coix seedlings by each and mixture in equal proportion of the two supernatants ranked in the order of L21>R24>mixed bacterial liquid[ V (R24)∶ V (L21)=1∶1]. The 16S rDNA sequence phylogenetic analysis identified R24 as Bacillus pumilus and L21 as B. velezensis. Conclusion The phosphobacteria L21 and R24 displayed a significant effect in promoting the growth of Coix seedlings. -
Key words:
- Coix /
- endophytes /
- phosphobacteria /
- phosphate-solubilizing ability /
- identification
-
表 1 菌株降解有机磷能力的比较
Table 1. Organic phosphate degrading ability of strains
菌株
Strains菌株直径
Strain diameter/
cm透明圈直径
Diameter of transparent
ring/cmD/d R5 0.35±0.05 b 0.55±0.05 cd 1.58±0.09 b R24 0.29±0.06 b 0.63±0.09 bc 2.15±0.13 a R29 0.33±0.05 b 0.53±0.05 d 1.62±0.11 b R401 0.50±0.01 a 0.77±0.05 a 1.53±0.12 b S1 0.29±0.05 b 0.49±0.05 d 1.71±0.16 b S4 0.37±0.03 b 0.54±0.03 cd 1.46±0.19 b S22 0.39±0.03 b 0.66±0.06 b 1.69±0.09 b L21 0.49±0.11 a 0.79±0.02 a 1.66±0.32 b 不同小写字母表示不同材料间差异显著(P<0.05);下同。
Different small letters indicate significant 0.05 among different materials.The same as below.表 2 菌株降解无机磷的能力比较
Table 2. Inorganic phosphate degrading ability of strains
菌株编号
Strains菌株直径
Strain
diameter/cm透明圈直径
Diameter transparent
ring/cmD/d R5 0.70±0.10 a 1.32±0.18 a 1.89±0.15 bc R24 0.35±0.06 b 0.65±0.12 b 1.88±0.39 bc R29 0.29±0.04 b 0.52±0.09 b 1.82±0.16 bc R401 0.79±0.07 a 1.19±0.06 a 1.52±0.06 c L21 0.33±0.02 b 0.67±0.04 b 2.01±0.25 a 表 3 不同处理下盆栽薏苡农艺性状
Table 3. Agronomic traits of potted plants after treatments
时间
Time/d处理
Treatment株高
Plant height/cm茎粗
Stem diameter/mm分蘖
Tillers number/个叶片
Blades number/片叶面积
Leaf area/m2叶绿素相对含量
SPAD15 T1 38.80±3.49 a 5.34±0.09 a 0.00±0.00 4.40±0.55 a 0.29±0.03 a 19.45±0.85 ab T2 37.00±2.12 a 4.72±0.23 bc 0.00±0.00 4.00±0.00 a 0.28±0.05 a 21.14±1.37 a T3 39.40±2.07 a 5.05±0.20 ab 0.00±0.00 4.40±0.55 a 0.25±0.04 a 20.17±1.64 ab CK 36.80±3.96 a 4.66±0.45 c 0.00±0.00 4.20±0.45 a 0.25±0.06 a 18.12±1.83 b 30 T1 52.00±7.18 a 6.94±0.27 a 1.60±0.89 a 5.20±0.45 a 0.56±0.06 a 23.11±1.72 a T2 42.00±3.54 b 7.07±0.36 a 1.40±0.89 a 5.40±0.55 a 0.47±0.09 ab 21.78±1.69 ab T3 46.60±6.31 ab 6.82±0.54 a 1.40±0.55 a 5.40±0.55 a 0.54±0.09 a 20.84±1.62 bc CK 40.80±7.05 b 5.87±0.19 b 0.60±0.55 a 5.20±0.45 a 0.40±0.06 b 19.30±0.49 c 45 T1 55.80±4.21 a 8.91±0.42 a 2.20±0.45 a 6.00±0.00 a 0.79±0.06 a 22.79±0.78 a T2 51.00±4.30 a 8.56±0.3 a 2.20±0.45 a 5.60±0.55 a 0.70±0.09 b 20.38±0.91 b T3 52.80±9.73 a 7.21±0.36 b 1.80±1.10 ab 5.60±0.55 a 0.74±0.04 ab 18.90±0.48 c CK 54.40±2.88 a 6.76±0.35 b 1.00±0.71 b 5.40±0.55 a 0.61±0.02 c 16.90±1.16 d 60 T1 70.80±4.32 a 9.04±0.34 a 2.20±0.45 ab 6.20±0.45 a 0.92±0.04 a 18.42±0.92 a T2 67.20±4.44 a 8.68±0.19 a 2.40±0.55 a 6.00±0.00 a 0.77±0.06 b 18.70±1.01 a T3 66.00±4.30 a 7.70±0.12 b 1.80±1.10 ab 5.80±0.45 a 0.89±0.07 a 15.67±1.21 b CK 58.00±2.55 b 7.24±0.62 b 1.20±0.84 b 6.00±0.00 a 0.60±0.08 c 16.28±2.45 b 表 4 菌株的生理生化特性
Table 4. Physiological and biochemical characteristics of strains
试验指标 Test index 菌株 Strains R24 L21 革兰氏染色 Gram stain + + V-P试验 V-P test + + 甲基红试验 Methyl red test − + 淀粉水解试验 Starch hydrolysis test − + 吲哚试验 Indole test + + 柠檬酸试验 Citrate test + − 明胶液化 Gelatin liquefaction + + 硝酸盐试验 Nitrate reduction test − + +:阳性;−:阴性。
+: Positive; −: Negative. -
[1] 李晓凯, 顾坤, 梁慕文, 等. 薏苡仁化学成分及药理作用研究进展 [J]. 中草药, 2020, 51(21):5645−5657. doi: 10.7501/j.issn.0253-2670.2020.21.031LI X K, GU K, LIANG M W, et al. Research progress on chemical constituents and pharmacological effects of Coicis Semen [J]. Chinese Traditional and Herbal Drugs, 2020, 51(21): 5645−5657.(in Chinese) doi: 10.7501/j.issn.0253-2670.2020.21.031 [2] 王艳玲, 何园球, 吴洪生, 等. 长期施肥下红壤磷素积累的环境风险分析 [J]. 土壤学报, 2010, 47(5):880−887. doi: 10.11766/trxb200901090016WANG Y L, HE Y Q, WU H S, et al. Environmental risk analysis of accumulated phosphorus in red soil under long-term fertilization [J]. Acta Pedologica Sinica, 2010, 47(5): 880−887.(in Chinese) doi: 10.11766/trxb200901090016 [3] SANTOYO G, MORENO H G, OROZCO M M, et al. Plant growth-promoting bacterial endophytes [J]. Microbiological Research, 2016, 183: 92−99. doi: 10.1016/j.micres.2015.11.008 [4] 潘复静, 陈英倩, 梁月明, 等. 种植密度对马尾松人工林土壤磷转化功能微生物与细菌群落结构的影响 [J]. 生态学杂志, 2021, 40(5):1233−1243.PAN F J, CHEN Y Q, LIANG Y M, et al. Effects of stand density on community structure of soil phoD-harboring microorganisms and bacteria in Pinus massoniana plantations [J]. Chinese Journal of Ecology, 2021, 40(5): 1233−1243.(in Chinese) [5] WONIAK M, GAZKA A, TYKIEWICZ R, et al. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the biolog GEN III MicroPlateTM Test [J]. International Journal of Molecular Sciences, 2019, 20(21): 5283. doi: 10.3390/ijms20215283 [6] 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展 [J]. 微生物学杂志, 2021, 41(1):1−7. doi: 10.3969/j.issn.1005-7021.2021.01.001CHI J L, HAO M, WANG Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism [J]. Journal of Microbiology, 2021, 41(1): 1−7.(in Chinese) doi: 10.3969/j.issn.1005-7021.2021.01.001 [7] 陆蓝翔, 江明明, 王焱, 等. 两株樟树促生抗病内生细菌的分离、筛选及鉴定 [J]. 南京林业大学学报(自然科学版), 2018, 42(6):128−136.LU L X, JIANG M M, WANG Y, et al. Isolation, screening and identification of endophytic bacteria from Cinnamomum camphora that promote growth and antagonistic pathogen [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(6): 128−136.(in Chinese) [8] 卢志红, 倪国荣, 陈龙, 等. 鸭跖草抗铜内生菌株的筛选及其促生性质研究 [J]. 江西农业大学学报, 2019, 41(6):1167−1174.LU Z H, NI G R, CHEN L, et al. Isolation and growth-promoting properties of Anti-copper endophytes strains from Commelina communis [J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(6): 1167−1174.(in Chinese) [9] 蔡红丹, 王碧盈, 肖翠红, 等. 解磷、溶磷菌对水稻种子萌发的影响 [J]. 黑龙江农业科学, 2019(7):42−45. doi: 10.11942/j.issn1002-2767.2019.07.0042CAI H D, WANG B Y, XIAO C H, et al. Effects of phosphate-solubilizing bacteria on seed germination of rice [J]. Heilongjiang Agricultural Sciences, 2019(7): 42−45.(in Chinese) doi: 10.11942/j.issn1002-2767.2019.07.0042 [10] 农明英, 张世鲍, 高海涛, 等. 薏苡品种文薏2号及主要栽培技术 [J]. 中国种业, 2018(10):94−97. doi: 10.3969/j.issn.1671-895X.2018.10.036NONG M Y, ZHANG S B, GAO H T, et al. Variety Wenyi No. 2 and its main cultivation techniques [J]. China Seed Industry, 2018(10): 94−97.(in Chinese) doi: 10.3969/j.issn.1671-895X.2018.10.036 [11] CARDOSO V M, CAMPOS F F, SANTOS A, et al. Biotechnological applications of the medicinal plant Pseudobrickellia brasiliensis and its isolated endophytic bacteria [J]. Journal of Applied Microbiology, 2020, 129(4): 926−934. doi: 10.1111/jam.14666 [12] 郭艺鹏, 王海儒, 孙林琦, 等. 枣根际解磷细菌的分离筛选及16S rDNA鉴定 [J]. 河南农业大学学报, 2015, 49(6):811−816,837.GUO Y P, WANG H R, SUN L Q, et al. Screening and 16S rDNA identification of phosphate-solubilizing bacteria in rhizosphere soils of jujube [J]. Journal of Henan Agricultural University, 2015, 49(6): 811−816,837.(in Chinese) [13] 张黎丽, 张阁, 王欣艺, 等. 土壤中降解有机磷微生物的筛选 [J]. 山东农业大学学报(自然科学版), 2019, 50(5):774−777.ZHANG L M, ZHANG G, WANG X Y, et al. Screening of strains for Organophosphorus-degradation in soil [J]. Journal of Shandong Agricultural University(Natural Science Edition), 2019, 50(5): 774−777.(in Chinese) [14] 赵为容. 小麦亲和性根际解磷菌解磷机理及促生效果研究[D]. 合肥: 安徽农业大学, 2018.ZHAO W R. Study on phosphorus dissolving mechanisms and growth-promoting effects of affinity Phosphate-solubilizing rhizobacteria for wheat[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese) [15] ADNAN M, FAHAD S, ZAMIN M, et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress [J]. Plants, 2020, 9(7): 900. doi: 10.3390/plants9070900 [16] 张云霞, 雷鹏, 许宗奇, 等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响 [J]. 江苏农业学报, 2016, 32(5):1073−1080. doi: 10.3969/j.issn.1000-4440.2016.05.019ZHANG Y X, LEI P, XU Z Q, et al. Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 1073−1080.(in Chinese) doi: 10.3969/j.issn.1000-4440.2016.05.019 [17] 马骢毓, 张英, 马文彬, 等. 黄芪根际促生菌(PGPR)筛选与特性研究 [J]. 草业学报, 2017, 26(1):149−159. doi: 10.11686/cyxb2016263MA C Y, ZHANG Y, MA W B, et al. Identification of plant growth promoting rhizobacteria Astragalus membranaceus and their effectives [J]. Acta Prataculturae Sinica, 2017, 26(1): 149−159.(in Chinese) doi: 10.11686/cyxb2016263 [18] 狄义宁, 刘鲁峰, 谢林艳, 等. 一株甘蔗内生菌鉴定及其溶磷能力的研究 [J]. 作物杂志, 2018, 34(6):68−75. doi: 10.16035/j.issn.1001-7283.2018.06.011DI Y N, LIU L F, XIE L Y, et al. Identification and characterization of a phosphate-solubilizing endophyte from sugarcane [J]. Crops, 2018, 34(6): 68−75.(in Chinese) doi: 10.16035/j.issn.1001-7283.2018.06.011 [19] 庄馥璐, 柴小粉, 高蓓蓓, 等. 苹果根际解磷菌的分离筛选及解磷能力 [J]. 中国农业大学学报, 2020, 25(7):69−79. doi: 10.11841/j.issn.1007-4333.2020.07.07ZHUANG F L, CHAI X F, GAO B, et al. Isolation and screening of phosphorus-solubilizing bacteria in apple rhizosphere [J]. Journal of China Agricultural University, 2020, 25(7): 69−79.(in Chinese) doi: 10.11841/j.issn.1007-4333.2020.07.07 [20] XIE J, YAN Z, WANG G, et al. A bacterium isolated from soil in a Karst rocky desertification region has efficient Phosphate-solubilizing and plant growth-promoting ability [J]. Frontiers in Microbiology, 2021(11): 625450. [21] 刘胜亮, 朱舒亮, 祁先慧, 等. 四株解磷菌分泌有机酸与溶解磷酸三钙能力的研究 [J]. 新疆农业科学, 2017, 54(6):1114−1121. doi: 10.6048/j.issn.1001-4330.2017.06.019LIU S L, ZHU S L, QI X H, et al. Study on organic acid secreted from 4 strains Phosphorus-solubilizing bacteria and calcium phosphate dissolving ability [J]. Xinjiang Agricultural Sciences, 2017, 54(6): 1114−1121.(in Chinese) doi: 10.6048/j.issn.1001-4330.2017.06.019 [22] LI Y, LIU X, HAO T, et al. Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates [J]. International Journal of Molecular Sciences, 2017, 18(7): 1253. doi: 10.3390/ijms18071253