Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22
-
摘要:
目的 蜡样芽孢杆菌BCCY-22是有效防治多种线虫病害的生防细菌。本研究旨在探明生防菌蜡样芽孢杆菌BCCY-22的最优培养条件,为实现该菌株的高效发酵奠定基础。 方法 以蜡样芽孢杆菌BCCY-22的OD600为指标,采用单因素试验和响应面法对该菌株发酵条件进行优化。 结果 高温、低初始pH和供氧不足显著影响蜡样芽孢杆菌BCCY-22的生长,最适发酵条件:发酵温度21.5 ℃、初始pH 7.3、种子液接种量3%、装瓶量23%、发酵时间36 h。 结论 蜡样芽孢杆菌BCCY-22优化发酵条件后,缩短了发酵时间6 h,生物量是优化前的135.94%,研究为蜡样芽孢杆菌BCCY-22生防菌的发酵生产和开发利用提供了依据。 Abstract:Objective Conditions for optimal fermentation of Bacillus cereus BCCY-22, which is known to be capable of effectively controlling a variety of nematode diseases, were determined. Methods Using OD600 of the fermentation broth as the indicator, optimal culture conditions for the process were determined with a single factor and response surface experimentation. Results High temperature, low initial pH, and restricted oxygen supply significantly governed the bacterial growth. The finalized process was carried out at 21.5 ℃ with an initial pH at 7.3 and inoculation of the seeding broth at 3% to fill 23% in a flask for 36 h. Conclusion The optimization shortened the fermentation time by 6 h and increased the biomass by 135.94%. The improvements materially provided the basis for industrialized utilization of B. cereus BCCY-22 as a biocontrol agent. -
表 1 试验因素水平
Table 1. Factor level of optimization experimentation
编号
Code变量
Variable水平 Level α +1 0 −1 −α A 温度 Temperature/ ℃ 33.41 30 25 20 16.59 B pH 8.86 7.5 5.5 3.5 2.14 C 装瓶量 Volume/% 73.64 60 40 20 6.36 表 2 中心复合设计及试验结果
Table 2. Design and results of experiment
编码类型
PtType区组
GroupA B C 温度
Temperature/ ℃pH 装瓶量
Volume/%OD600 1 1 1 1 −1 30.00 7.50 20.00 0.632 1 1 −1 −1 −1 20.00 3.50 20.00 0.048 1 1 1 −1 −1 30.00 3.50 20.00 0.050 −1 1 1.681792831 0 0 33.41 5.50 40.00 0.612 −1 1 −1.681792831 0 0 16.59 5.50 40.00 0.820 −1 1 0 0 1.681792831 25.00 5.50 73.64 0.535 1 1 −1 −1 1 20.00 3.50 60.00 0.056 −1 1 0 0 −1.681792831 25.00 5.50 6.36 0.915 0 1 0 0 0 25.00 5.50 40.00 0.782 1 1 −1 1 −1 20.00 7.50 20.00 0.854 1 1 1 1 1 30.00 7.50 60.00 0.614 0 1 0 0 0 25.00 5.50 40.00 0.737 1 1 −1 1 1 20.00 7.50 60.00 0.959 1 1 1 −1 1 30.00 3.50 60.00 0.043 0 1 0 0 0 25.00 5.50 40.00 0.788 0 1 0 0 0 25.00 5.50 40.00 0.755 −1 1 0 −1.681792831 0 25.00 2.14 40.00 0.060 0 1 0 0 0 25.00 5.50 40.00 1.012 −1 1 0 1.681792831 0 25.00 8.86 40.00 0.804 0 1 0 0 0 25.00 5.50 40.00 0.805 表 3 二次多项式回归方差分析
Table 3. Quadratic polynomial regression variance test results
来源
Source自由度
dfSeqSS AdjSS AdjMS F P 回归 Regression 9 1.91598 1.91598 0.21289 7.11 0.003 线性 Linear 3 1.32442 1.32442 0.44147 14.74 0.001 平方 Square 3 0.54962 0.54962 0.18321 6.12 0.012 交互作用 Interaction 3 0.04195 0.04195 0.01398 0.47 0.712 残差误差 Residual 10 0.29956 0.29956 0.02996 失拟 Misfit 5 0.24917 0.24917 0.04983 4.94 0.052 纯误差 Pure error 5 0.05039 0.05039 0.01008 合计 Total 19 2.21554 表 4 二次多项式回归系数及其显著性检验
Table 4. Quadratic polynomial regression coefficient and significance test
项
Item系数
Coefficient标准误
Standard errorT P 常量 Constant 0.81986 0.07059 11.615 0.000 A −0.11426 0.07877 −1.451 0.178 B 0.50628 0.07872 6.432 0.000 C −0.06787 0.07877 −0.862 0.409 A×A −0.21984 0.12896 −1.705 0.119 B×B −0.50411 0.12890 −3.911 0.003 C×C −0.21084 0.12896 −1.635 0.133 A×B −0.19639 0.17291 −1.136 0.283 A×C −0.04880 0.17312 −0.282 0.784 B×C 0.03038 0.17291 0.176 0.864 -
[1] HUANG C J, WANG T K, CHUNG S C, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9 [J]. BMB Reports, 2005, 38(1): 82−88. doi: 10.5483/BMBRep.2005.38.1.082 [2] LV R, WANG D, ZOU M, et al. Analysis of Bacillus cereus cell viability, sublethal injury, and death induced by mild thermal treatment [J]. Journal of Food Safety, 2019, 39(1): .e12581. doi: 10.1111/jfs.12581 [3] SONI A, OEY I, SILCOCK P, et al. Impact of temperature, nutrients, pH and cold storage on the germination, growth and resistance of Bacillus cereus spores in egg white [J]. Food Research International (Ottawa, Ont ), 2018, 106: 394−403. doi: 10.1016/j.foodres.2018.01.006 [4] BEGYN K, KIM T D, HEYNDRICKX M, et al. Directed evolution by UV-C treatment of Bacillus cereus spores [J]. International Journal of Food Microbiology, 2019, 317: 108424. [5] WU X Z, LI H L, WANG Y, et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement [J]. Biocontrol Science and Technology, 2020, 30(4): 351−369. doi: 10.1080/09583157.2020.1711870 [6] ZHOU J, FENG Z, LIU S, et al. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP‐10, suppresses Verticillium dahliae and mediates plant defence responses [J]. Molecular plant pathology, 2021, 22(1): 130−144. doi: 10.1111/mpp.13014 [7] MARTÍNEZ-ÁLVAREZ J C, CASTRO-MARTÍNEZ C, SÁNCHEZ-PEÑA P, et al. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants [J]. World Journal of Microbiology and Biotechnology, 2016, 32(5): 1−10. [8] ZHANG J, LI Y, YUAN H, et al. Biological control of the cereal cyst nematode (Heterodera filipjevi) by Achromobacter xylosoxidans isolate 09X01 and Bacillus cereus isolate 09B18 [J]. Biological Control, 2016, 92: 1−6. doi: 10.1016/j.biocontrol.2015.08.004 [9] VILJOEN J J F, LABUSCHAGNE N, FOURIE H, et al. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Tropical Plant Pathology, 2019, 44(3): 284−291. doi: 10.1007/s40858-019-00283-2 [10] SUBEDI P, GATTONI K, LIU W, et al. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes [J]. Plants, 2020, 9(9): 1167. doi: 10.3390/plants9091167 [11] GAO H, QI G, YIN R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine [J]. Scientific reports, 2016, 6(1): 1−11. doi: 10.1038/s41598-016-0001-8 [12] ALI A M, AWAD M Y M, HEGAB S A, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato [J]. Journal of Plant Nutrition, 2021, 44(3): 411−420. doi: 10.1080/01904167.2020.1822399 [13] 张海艳, 刘芳, 姜旭芳. 蜡样芽孢杆菌的抗逆性研究 [J]. 甘肃畜牧兽医, 2022, 52(3):34−36, 40. doi: 10.3969/j.issn.1006-799X.2022.03.011ZHANG H Y, LIU F, JIANG X F. Research on the stress resistance of Bacillus cereus [J]. Gansu Animal Husbandry and Veterinary Medicine, 2022, 52(3): 34−36, 40.(in Chinese) doi: 10.3969/j.issn.1006-799X.2022.03.011 [14] VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis [J]. Canadian journal of microbiology, 2007, 53(6): 673−687. doi: 10.1139/W07-029 [15] 杨传旭, 赵迪, 谭卓, 等. 响应面法优化根结线虫生防真菌Snef5的发酵工艺 [J]. 中国生物防治学报, 2016, 32(4):503−510. doi: 10.16409/j.cnki.2095-039x.2016.04.012YANG C X, ZHAO D, TAN Z, et al. Ferment Optimization of Biocontrol Fungus Snef5 against Meloidogyne incognita by Response Surface Methodology [J]. Chinese Journal of Biological Control, 2016, 32(4): 503−510.(in Chinese) doi: 10.16409/j.cnki.2095-039x.2016.04.012 [16] ZHANG S, GAN Y, LIU J, et al. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes [J]. Frontiers in Microbiology, 2020, 11: 574601. doi: 10.3389/fmicb.2020.574601 [17] 咸洪泉, 赵洪海, 李雅华, 等. 蜡样芽孢杆菌, 菌剂及其制备方法和应用: CN109749953A[P]. 2019-05-14. [18] DING S, CUI Y, XU F, et al. Characteristics of a transferable tet (45) gene conferring resistance to tetracyclines in probiotic Bacillus cereus [J]. Chinese Journal, 2020, 65(32): 3619−3625. [19] CHEN Y Y, WU H X, SUN P, et al. Remediation of chromium-contaminated soil based on Bacillus cereus WHX-1 immobilized on biochar: Cr(VI) transformation and functional microbial enrichment [J]. Frontiers in Microbiology, 2021, 12: 641913. doi: 10.3389/fmicb.2021.641913 [20] 卢国柱. 蜡样芽孢杆菌中有效抗菌物质的分离、纯化及初步鉴定[D]. 烟台: 烟台大学, 2021.LU G Z. Isolation, purification and preliminary identification of effective antimicrobial substances from Bacillus cereus[D]. Yantai: Yantai University, 2021. (in Chinese) [21] RAMÍREZ V, MARTÍNEZ J, BUSTILLOS‐CRISTALES M R, et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum [J]. Journal of Applied Microbiology, 2022, 132(1): 470−482. doi: 10.1111/jam.15179 [22] VILLARREAL-DELGADO M F, VILLA-RODRÍGUEZ E D, CIRA-CHÁVEZ L A, et al. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity [J]. Revista mexicana de fitopatología, 2018, 36(1): 95−130. [23] YANG F F, LONG C, WEI Z L, et al. Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae) [J]. Journal of Phycology, 2020, 56(5): 1208−1215. doi: 10.1111/jpy.13007 [24] 陈倩, 张露源, 陈伯昌, 等. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析 [J]. 生物技术通报, 2021, 37(7):127−136.CHEN Q, ZHANG L Y, CHEN B C, et al. Optimization of fermentation conditions of Myrothecium verrucaria ZW-2, a biocontrol strain against Heterodera glycines and analysis of active substances [J]. Biotechnology Bulletin, 2021, 37(7): 127−136.(in Chinese) [25] 朱海云, 马瑜, 柯杨, 等. 抗猕猴桃细菌性溃疡病蜡样芽孢杆菌MA23培养基及发酵条件优化 [J]. 中国农学通报, 2021, 37(7):112−118. doi: 10.11924/j.issn.1000-6850.casb2020-0108ZHU H Y, MA Y, KE Y, et al. Optimization of culture medium and fermentation parameters of Bacillus cereus MA23 antagonistic to kiwifruit canker [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 112−118.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2020-0108 [26] CHEN X, LI S, CONG X, et al. Optimization of Bacillus cereus Fermentation Process for Selenium Enrichment as Organic Selenium Source [J]. Frontiers in Nutrition, 2020, 7: 543−873. [27] 尹艳楠, 吴佳雯, 谈家金, 等. 松树内生蜡样芽孢杆菌NJSZ-13菌株发酵培养基及条件优化 [J]. 浙江林业科技, 2020, 40(6):9−17. doi: 10.3969/j.issn.1001-3776.2020.06.002YIN Y N, WU J W, TAN J J, et al. Optimization of medium and culture conditions for Bacillus cereus NJSZ-13 [J]. Journal of Zhejiang Forestry Science and Technology, 2020, 40(6): 9−17.(in Chinese) doi: 10.3969/j.issn.1001-3776.2020.06.002 [28] 刘树森, 赵建龙, Ahmed Shahid, 等. 禾谷胞囊线虫(Heterodera avenae)在小麦上的侵染和种群动态. [J]. 云南农业大学学报(自然科学), 2017, 32(1):1−10.LIU S S, ZHAO J L, AHMED S, et al. Population Dynamics and Infection of Cereal Cyst Nematode (Heterodera avenae) in Wheat in Beijing. [J]. Journal of Yunnan Agricultural University, 2017, 32(1): 1−10.(in Chinese)