Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf
-
摘要:
目的 通过GC-TOF-MS非靶向代谢组学分析茶叶做青工序对武夷肉桂茶树叶片代谢物的影响,探究做青对乌龙茶品质形成的作用机制,并提供理论参考。 方法 采摘武夷肉桂中开面3、4叶,经短时间晒青后,按照闽北乌龙茶的做青工艺制成做青组样品,将叶片自然摊放作为对照组(CK),采用气相色谱−飞行时间质谱检测样品,运用多元统计分析OPLS-DA 和单变量统计分析相结合的方法筛选差异代谢物,并进行代谢通路KEGG富集分析。 结果 与晒青叶相比,对照组及做青组样品中能够鉴定出的差异代谢物分别为21个和14个,其含量主要呈现上调趋势;与对照组相比,做青组样品中显著上调和下调的差异代谢物分别为9个和3个;检测到的差异代谢物包括莽草酸、柠檬酸、L-苹果酸、棉子糖、麦芽糖等有机酸和糖类物质。 结论 做青工序显著刺激了三羧酸循环中部分中间产物以及莽草酸途径中莽草酸含量发生变化,这主要与氨基酸、碳水化合物等物质代谢有关;其中莽草酸含量在做青结束时显著降低,而苯丙氨酸含量有所提高,这可能与茶叶芳香族化合物的合成有关。 Abstract:Objective Effect of rocking-withering in processing Wuyi rougui tea on the metabolites in leaves was analyzed using GC-TOF-MS non-targeted metabonomics. Method Freshly plucked buds and leaves from Wuyi rougui tea bushes were processed according to the conventional northern Fujian technique with or without (CK) the rocking-withering procedure. The non-targeted metabolic analysis was performed to obtain data for differentiating the metabolites in the leaves by multivariate and univariate statistical analyses. A KEGG pathway enrichment analysis was conducted to identify the associated metabolic pathways. Result Compared with the conventional brief withering under the sun, the different metabolites of tea leaves without rocking (CK) and after rocking-withering were 21 and 14; meanwhile tea leaves after rocking-withering had 9 significantly upregulated and 3 downregulated metabolites compared to leaves without rocking (CK) . The most significant differentiations were found in the metabolites such as shikimic acid, citric acid, L-malic acid, raffinose, and maltose. Conclusion Rocking-withering stimulated the tea leaves to produce certain intermediate products in the tricarboxylic acid cycle and caused a reduction on shikimic acid. It was the metabolisms of amino acids and carbohydrates that were largely affected. The significantly reduced shikimic acid and increased phenylalanine in LY7M metabolite might play a role in the synthesis of aromatic compounds that give the oolong tea its characteristic sensory quality. -
Key words:
- Wuyi rougui tea /
- rocking-withering /
- non-targeted metabolomics /
- primary metabolites
-
表 1 样品间差异代谢物的筛选
Table 1. Differential metabolites in samples
代谢产物
Metabolites保留时间
Retention time/minSYM & CK7M SYM & LY7M CK7M & LY7M 参考
Reference丙氨酸 Alanine 8.02 ↑ ↑ — 标品 Standard sample 硫磺酸 Sulfuric acid 8.91 ↑ — ↓ 标品 Standard sample 异亮氨酸 Isoleucine 9.15 ↑ — — 标品 Standard sample 缬氨酸 Valine 9.61 ↑ — — 标品 Standard sample 琥珀酸 Succinic acid 10.99 ↑ ↑ ↑ 标品 Standard sample L-苹果酸 L-Malic acid 13.26 ↑ ↑ — 标品Standard sample 3-己烯二酸 3-Hexenedioic acid 13.49 ↑ ↑ — 搜库 Database 苏糖酸 Threonic acid 14.09 ↑ ↑ ↑ 搜库 Database 肌酸 Creatine 15.15 ↑ ↑ — 搜库 Database 木糖1 Xylose 1 15.29 ↑ ↑ ↑ 搜库 Database 核糖 Ribose 15.46 ↑ ↑ ↑ 搜库 Database 苯丙氨酸 Phenylalanine 14.12 ↑ ↑ ↑ 标品 Standard sample 莽草酸 Shikimic acid 16.96 ↑ — ↓ 标品 Standard sample 柠檬酸 Ctric acid 17.05 ↓ — ↑ 标品 Standard sample 3-(4-羟基苯基)乳酸 DL-p-hydroxyphenyllactic acid 17.82 ↓ — — 搜库 Database 肌醇 Myo-inositol 19.75 ↑ ↑ — 搜库 Database N-乙酰-β-D-甘露糖胺 N-acetyl-beta-D-mannosamine 19.89 ↑ — — 搜库 Database D-鞘氨醇 D-erythro-sphingosine 22.65 ↑ — — 搜库 Database 二氢鞘氨醇 DL-dihydrosphingosine 23.21 ↑ — — 搜库 Database 熊果苷 Arbutin 23.79 ↑ — — 标品 Standard sample 棉子糖 Raffinose 30.03 ↑ — ↓ 搜库 Database D-甘油酸 D-glyceric acid 11.17 — ↑ ↑ 搜库 Database 4-氨基丁酸1 4-aminobutyric acid 1 13.78 — ↑ ↑ 搜库Database D-赤酮酸内酯 D-erythronolactone 14.58 — ↑ — 搜库 Database 橙皮素 Hesperitin 26.58 — — ↑ 标品 Standard sample 麦芽糖 Maltose 25.25 — ↑ — 标品 Standard sample “↑”表示显著上升;“↓”表示显著下降;“—”表示无明显差异。
"↑" increase obviously, "↓"decrease obviously, "—"no obvious difference. -
[1] SUMNER L W, MENDES P, DIXON R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era [J]. Phytochemistry, 2003, 62(6): 817−836. doi: 10.1016/S0031-9422(02)00708-2 [2] 戴宇樵, 吕才有. 代谢组学技术在茶学中的应用研究进展 [J]. 江苏农业科学, 2019, 47(2):24−28.DAI Y Q, LYU C Y. Research progress of application of metabolomics technology in tea science [J]. Jiangsu Agricultural Sciences, 2019, 47(2): 24−28.(in Chinese) [3] 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012WANG X M. Metabolic profiling analysis on the main characteristic metabolites investigates the metabolic changes during the processing of Qimen black tea[D]. Hefei: Anhui Agricultural University, 2012. (in Chinese) [4] 张静杰. 基于代谢谱分析的工夫红茶加工工艺优化及其品质形成研究[D]. 合肥: 安徽农业大学, 2013ZHANG J J. Metabolic profiling reveals the optimal processing technique on the main characteristic metabolites of Congou black tea[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese) [5] 陈红霞. 普洱茶发酵过程的代谢组学研究[D]. 北京: 北京化工大学, 2013CHEN H X. Ametabonomic study during Pu-erh tea fermentation[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese) [6] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较 [J]. 食品科学, 2020, 41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358LI X L, YU X M, LIN J, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach [J]. Food Science, 2020, 41(12): 197−203.(in Chinese) doi: 10.7506/spkx1002-6630-20190128-358 [7] DAI W D, XIE D C, LU M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach [J]. Food Research International, 2017, 96: 40−45. doi: 10.1016/j.foodres.2017.03.028 [8] FRASER K, LANE G A, OTTER D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand [J]. Food Chemistry, 2014, 151: 394−403. doi: 10.1016/j.foodchem.2013.11.054 [9] CHEN S, LIU H H, ZHAO X M, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture [J]. Food Research International, 2020, 128: 108778. doi: 10.1016/j.foodres.2019.108778 [10] LIU Z B, CHEN F C, SUN J Y, et al. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui) [J]. Food Chemistry, 2022, 367: 130624. doi: 10.1016/j.foodchem.2021.130624 [11] 贺群, 黄旦益, 卢翠, 等. 适制绿茶与红绿茶兼宜品种挥发性香气组分及其相对含量差异研究 [J]. 西北农业学报, 2017, 26(9):1363−1378. doi: 10.7606/j.issn.1004-1389.2017.09.014HE Q, HUANG D Y, LU C, et al. Comparative analysis on volatile aroma components and its relative content difference in fresh leaves among tea varieties suitable for green tea and for both black tea and green tea [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(9): 1363−1378.(in Chinese) doi: 10.7606/j.issn.1004-1389.2017.09.014 [12] 汤莎莎, 芦晨阳, 周君, 等. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质 [J]. 食品工业科技, 2018, 39(14):223−230. doi: 10.13386/j.issn1002-0306.2018.14.042TANG S S, LU C Y, ZHOU J, et al. Volatile flavor compounds of different wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS [J]. Science and Technology of Food Industry, 2018, 39(14): 223−230.(in Chinese) doi: 10.13386/j.issn1002-0306.2018.14.042 [13] 王丽鸳, 成浩, 周健, 等. 基于多元化学指纹图谱的武夷岩茶身份判别研究 [J]. 茶叶科学, 2010, 30(2):83−88. doi: 10.3969/j.issn.1000-369X.2010.02.002WANG L Y, CHENG H, ZHOU J, et al. Discriminant classification of Wuyi Yan tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2010, 30(2): 83−88.(in Chinese) doi: 10.3969/j.issn.1000-369X.2010.02.002 [14] 成浩, 王丽鸳, 周健, 等. 基于化学指纹图谱的扁形茶产地判别分析研究 [J]. 茶叶科学, 2008, 28(2):83−88.CHENG H, WANG L Y, ZHOU J, et al. Discriminant classification of production area of flatten-shaped green tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2008, 28(2): 83−88.(in Chinese) [15] 周黎, 赵振军, 刘勤晋, 等. 不同贮藏年份普洱茶非挥发物质的GC-MS分析 [J]. 西南大学学报(自然科学版), 2009, 31(11):140−144.ZHOU L, ZHAO Z J, LIU Q J, et al. GC-MS analysis of non-volatile components of Pu-erh tea stored for different years [J]. Journal of Southwest University (Natural Science Edition), 2009, 31(11): 140−144.(in Chinese) [16] 刘顺航, 徐咏全, 李长文, 等. 不同年份生产帝泊洱茶珍HPLC指纹图谱研究 [J]. 茶叶通讯, 2016, 43(2):24−29. doi: 10.3969/j.issn.1009-525X.2016.02.006LIU S H, XU Y Q, LI C W, et al. Study on deepure instant Pu-erh tea from different years by HPLC fingerprint [J]. Journal of Tea Communication, 2016, 43(2): 24−29.(in Chinese) doi: 10.3969/j.issn.1009-525X.2016.02.006 [17] 胡燕, 齐桂年. 四川黑茶的高效液相色谱指纹图谱研究 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):134−140.HU Y, QI G N. High performance liquid chromatographic fingerprinting of Sichuan dark tea [J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(1): 134−140.(in Chinese) [18] 郑起帆. 基于1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016ZHENG Q F. 1H-NMR-based metabolomics for Pu-erh raw tea from four different mountain origins[D]. Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese) [19] DAGLIA M, ANTIOCHIA R, SOBOLEV A, et al. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L. ) [J]. Food Research International, 2014, 63: 275−289. doi: 10.1016/j.foodres.2014.03.070 [20] 王镜岩, 朱圣庚, 徐长法, 等. 生物化学[M]. 第3版. 北京: 高等教育出版社, 2002: 110-111. [21] 傅豪, 魏旭, 梁国鲁, 等. 茶树莽草酸代谢途径相关基因研究进展 [J]. 分子植物育种, 2021, 19(2):485−493.FU H, WEI X, LIANG G L, et al. Research progress on genes related to shikimic acid metabolism pathway in tea plant(Camellia sinensis) [J]. Molecular Plant Breeding, 2021, 19(2): 485−493.(in Chinese) [22] 向林, 陈龙清. 花香的基因工程研究进展 [J]. 中国农业科学, 2009, 42(6):2076−2084. doi: 10.3864/j.issn.0578-1752.2009.06.025XIANG L, CHEN L Q. Adavances in genetic engineering of floral scent [J]. Scientia Agricultura Sinica, 2009, 42(6): 2076−2084.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.06.025 [23] ZHENG C, ZHAO L, WANG Y, et al. Integrated RNA-seq and sRNA-seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis) [J]. PLoS One, 2015, 10(4): e0125031. doi: 10.1371/journal.pone.0125031 [24] ZHOU Y, ZENG L T, LIU X Y, et al. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing [J]. Food Chemistry, 2017, 231: 78−86. doi: 10.1016/j.foodchem.2017.03.122 [25] GUI J D, FU X M, ZHOU Y, et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? [J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905−6914. doi: 10.1021/acs.jafc.5b02741 [26] 唐邦明, 吴阳风, 陈迪, 等. 基于广泛靶向代谢组学的乌龙茶加工过程中差异代谢物分析 [J]. 食品科技, 2021, 46(11):81−89.TANG B M, WU Y F, CHEN D, et al. Analysis on differential metabolites of the samples from oolong tea production based on widely-targeted metabonomic approach [J]. Food Science and Technology, 2021, 46(11): 81−89.(in Chinese) [27] ZENG L T, ZHOU X C, SU X G, et al. Chinese oolong tea: An aromatic beverage produced under multiple stresses [J]. Trends in Food Science & Technology, 2020, 106: 242−253. [28] YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844−858. doi: 10.1080/10408398.2018.1552245 [29] 邱晓红, 张丹丹, 韦航, 等. 基于PTR-TOF-MS与GC-MS技术的武夷水仙和武夷肉桂香气特征分析 [J]. 天然产物研究与开发, 2018, 30(7):1195−1201.QIU X H, ZHANG D D, WEI H, et al. Analysis of aroma of different varieties of Wuyi rock tea by PTR-TOF-MS and GC-MS [J]. Natural Product Research and Development, 2018, 30(7): 1195−1201.(in Chinese) [30] 邓慧莉. 武夷岩茶加工过程香气形成及糖苷酶基因表达的研究[D]. 福州: 福建农林大学, 2016DENG H L. Studies on aroma formation and glycosidase gene expression in Wuyi rock tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese) [31] 成晨. 乌龙茶连续慢速做青工艺研究[D]. 广州: 华南农业大学, 2019CHENG C. Study on continuous green-making technique of oolong tea with slow speed[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese)