• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非靶向代谢组学研究做青工序对肉桂茶代谢产物的影响

林馥茗 孙威江

林馥茗,孙威江. 基于非靶向代谢组学研究做青工序对肉桂茶代谢产物的影响 [J]. 福建农业学报,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013
引用本文: 林馥茗,孙威江. 基于非靶向代谢组学研究做青工序对肉桂茶代谢产物的影响 [J]. 福建农业学报,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013
LIN F M, SUN W J. Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf [J]. Fujian Journal of Agricultural Sciences,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013
Citation: LIN F M, SUN W J. Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf [J]. Fujian Journal of Agricultural Sciences,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013

基于非靶向代谢组学研究做青工序对肉桂茶代谢产物的影响

doi: 10.19303/j.issn.1008-0384.2022.007.013
基金项目: 福建省教育厅中青年教师教育科研项目(JT180117);安溪茶学院青年骨干培养基金项目(ACKY2015004)
详细信息
    作者简介:

    林馥茗(1986−),女,硕士,讲师,研究方向:茶叶加工与品质化学(E-mail:497147822@qq.com

    通讯作者:

    孙威江(1964−),男,博士,教授,研究方向:茶叶资源育种与标准化(E-mail:swj8103@126.com

  • 中图分类号: S 609

Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf

  • 摘要:   目的  通过GC-TOF-MS非靶向代谢组学分析茶叶做青工序对武夷肉桂茶树叶片代谢物的影响,探究做青对乌龙茶品质形成的作用机制,并提供理论参考。  方法  采摘武夷肉桂中开面3、4叶,经短时间晒青后,按照闽北乌龙茶的做青工艺制成做青组样品,将叶片自然摊放作为对照组(CK),采用气相色谱−飞行时间质谱检测样品,运用多元统计分析OPLS-DA 和单变量统计分析相结合的方法筛选差异代谢物,并进行代谢通路KEGG富集分析。  结果  与晒青叶相比,对照组及做青组样品中能够鉴定出的差异代谢物分别为21个和14个,其含量主要呈现上调趋势;与对照组相比,做青组样品中显著上调和下调的差异代谢物分别为9个和3个;检测到的差异代谢物包括莽草酸、柠檬酸、L-苹果酸、棉子糖、麦芽糖等有机酸和糖类物质。  结论  做青工序显著刺激了三羧酸循环中部分中间产物以及莽草酸途径中莽草酸含量发生变化,这主要与氨基酸、碳水化合物等物质代谢有关;其中莽草酸含量在做青结束时显著降低,而苯丙氨酸含量有所提高,这可能与茶叶芳香族化合物的合成有关。
  • 图  1  各样品代谢物的PCA分析

    Figure  1.  PCA analysis on metabolites in samples

    图  2  SYM与CK7M代谢物的OPLS-DA分析

    Figure  2.  OPLS-DA analysis on SYM and CK7M metabolites

    图  3  SYM与LY7M代谢物的OPLS-DA分析

    Figure  3.  OPLS-DA analysis on SYM and LY7M metabolites

    图  4  CK7M与LY7M代谢物的OPLS-DA分析

    Figure  4.  OPLS-DA analysis on CK7M and LY7M metabolites

    图  5  样品间差异代谢物的KEGG通路富集分析

    Figure  5.  KEGG pathway enrichment analysis on differential metabolites in samples

    图  6  晒青叶SYM与摊青叶CK7M间差异代谢物

    SYM-1~SYM-6指晒青叶;CK7M-1~CK7M-6指对照组。

    Figure  6.  Differential metabolites between sample SYM and CK7M

    SYM-1 to SYM-6: withered leaves.CK7M-1 to CK7M-6: the control group(non-rocked leaves).

    图  7  晒青叶SYM与做青叶LY7M间差异代谢物

    SYM-1~SYM-6指晒青叶;LY7M-1~LY7M-6指做青叶。

    Figure  7.  Differential metabolites between sample SYM and LY7M

    SYM-1 to SYM-6: withered leaves; LY7M-1 to LY7M-6: tea leaves by turned over.

    图  8  摊青叶CK7M与做青叶LY7M间差异代谢物

    CK7M-1~CK7M-6指对照组;LY7M-1~LY7M-6指做青叶。

    Figure  8.  Differential metabolites between sample CK7M and LY7M

    CK7M-1 to CK7M-6: CK; LY7M-1 to LY7M-6: rocking-withered leaves.

    表  1  样品间差异代谢物的筛选

    Table  1.   Differential metabolites in samples

    代谢产物
    Metabolites
    保留时间
    Retention time/min
    SYM & CK7MSYM & LY7MCK7M & LY7M参考
    Reference
    丙氨酸 Alanine8.02标品 Standard sample
    硫磺酸 Sulfuric acid8.91标品 Standard sample
    异亮氨酸 Isoleucine9.15标品 Standard sample
    缬氨酸 Valine9.61标品 Standard sample
    琥珀酸 Succinic acid10.99标品 Standard sample
    L-苹果酸 L-Malic acid13.26标品Standard sample
    3-己烯二酸 3-Hexenedioic acid13.49搜库 Database
    苏糖酸 Threonic acid14.09搜库 Database
    肌酸 Creatine15.15搜库 Database
    木糖1 Xylose 115.29搜库 Database
    核糖 Ribose15.46搜库 Database
    苯丙氨酸 Phenylalanine14.12标品 Standard sample
    莽草酸 Shikimic acid16.96标品 Standard sample
    柠檬酸 Ctric acid17.05标品 Standard sample
    3-(4-羟基苯基)乳酸 DL-p-hydroxyphenyllactic acid17.82搜库 Database
    肌醇 Myo-inositol19.75搜库 Database
    N-乙酰-β-D-甘露糖胺 N-acetyl-beta-D-mannosamine19.89搜库 Database
    D-鞘氨醇 D-erythro-sphingosine22.65搜库 Database
    二氢鞘氨醇 DL-dihydrosphingosine23.21搜库 Database
    熊果苷 Arbutin23.79标品 Standard sample
    棉子糖 Raffinose30.03搜库 Database
    D-甘油酸 D-glyceric acid11.17搜库 Database
    4-氨基丁酸1 4-aminobutyric acid 113.78搜库Database
    D-赤酮酸内酯 D-erythronolactone14.58搜库 Database
    橙皮素 Hesperitin26.58标品 Standard sample
    麦芽糖 Maltose25.25标品 Standard sample
    “↑”表示显著上升;“↓”表示显著下降;“—”表示无明显差异。
    "↑" increase obviously, "↓"decrease obviously, "—"no obvious difference.
    下载: 导出CSV
  • [1] SUMNER L W, MENDES P, DIXON R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era [J]. Phytochemistry, 2003, 62(6): 817−836. doi: 10.1016/S0031-9422(02)00708-2
    [2] 戴宇樵, 吕才有. 代谢组学技术在茶学中的应用研究进展 [J]. 江苏农业科学, 2019, 47(2):24−28.

    DAI Y Q, LYU C Y. Research progress of application of metabolomics technology in tea science [J]. Jiangsu Agricultural Sciences, 2019, 47(2): 24−28.(in Chinese)
    [3] 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012

    WANG X M. Metabolic profiling analysis on the main characteristic metabolites investigates the metabolic changes during the processing of Qimen black tea[D]. Hefei: Anhui Agricultural University, 2012. (in Chinese)
    [4] 张静杰. 基于代谢谱分析的工夫红茶加工工艺优化及其品质形成研究[D]. 合肥: 安徽农业大学, 2013

    ZHANG J J. Metabolic profiling reveals the optimal processing technique on the main characteristic metabolites of Congou black tea[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
    [5] 陈红霞. 普洱茶发酵过程的代谢组学研究[D]. 北京: 北京化工大学, 2013

    CHEN H X. Ametabonomic study during Pu-erh tea fermentation[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese)
    [6] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较 [J]. 食品科学, 2020, 41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358

    LI X L, YU X M, LIN J, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach [J]. Food Science, 2020, 41(12): 197−203.(in Chinese) doi: 10.7506/spkx1002-6630-20190128-358
    [7] DAI W D, XIE D C, LU M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach [J]. Food Research International, 2017, 96: 40−45. doi: 10.1016/j.foodres.2017.03.028
    [8] FRASER K, LANE G A, OTTER D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand [J]. Food Chemistry, 2014, 151: 394−403. doi: 10.1016/j.foodchem.2013.11.054
    [9] CHEN S, LIU H H, ZHAO X M, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture [J]. Food Research International, 2020, 128: 108778. doi: 10.1016/j.foodres.2019.108778
    [10] LIU Z B, CHEN F C, SUN J Y, et al. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui) [J]. Food Chemistry, 2022, 367: 130624. doi: 10.1016/j.foodchem.2021.130624
    [11] 贺群, 黄旦益, 卢翠, 等. 适制绿茶与红绿茶兼宜品种挥发性香气组分及其相对含量差异研究 [J]. 西北农业学报, 2017, 26(9):1363−1378. doi: 10.7606/j.issn.1004-1389.2017.09.014

    HE Q, HUANG D Y, LU C, et al. Comparative analysis on volatile aroma components and its relative content difference in fresh leaves among tea varieties suitable for green tea and for both black tea and green tea [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(9): 1363−1378.(in Chinese) doi: 10.7606/j.issn.1004-1389.2017.09.014
    [12] 汤莎莎, 芦晨阳, 周君, 等. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质 [J]. 食品工业科技, 2018, 39(14):223−230. doi: 10.13386/j.issn1002-0306.2018.14.042

    TANG S S, LU C Y, ZHOU J, et al. Volatile flavor compounds of different wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS [J]. Science and Technology of Food Industry, 2018, 39(14): 223−230.(in Chinese) doi: 10.13386/j.issn1002-0306.2018.14.042
    [13] 王丽鸳, 成浩, 周健, 等. 基于多元化学指纹图谱的武夷岩茶身份判别研究 [J]. 茶叶科学, 2010, 30(2):83−88. doi: 10.3969/j.issn.1000-369X.2010.02.002

    WANG L Y, CHENG H, ZHOU J, et al. Discriminant classification of Wuyi Yan tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2010, 30(2): 83−88.(in Chinese) doi: 10.3969/j.issn.1000-369X.2010.02.002
    [14] 成浩, 王丽鸳, 周健, 等. 基于化学指纹图谱的扁形茶产地判别分析研究 [J]. 茶叶科学, 2008, 28(2):83−88.

    CHENG H, WANG L Y, ZHOU J, et al. Discriminant classification of production area of flatten-shaped green tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2008, 28(2): 83−88.(in Chinese)
    [15] 周黎, 赵振军, 刘勤晋, 等. 不同贮藏年份普洱茶非挥发物质的GC-MS分析 [J]. 西南大学学报(自然科学版), 2009, 31(11):140−144.

    ZHOU L, ZHAO Z J, LIU Q J, et al. GC-MS analysis of non-volatile components of Pu-erh tea stored for different years [J]. Journal of Southwest University (Natural Science Edition), 2009, 31(11): 140−144.(in Chinese)
    [16] 刘顺航, 徐咏全, 李长文, 等. 不同年份生产帝泊洱茶珍HPLC指纹图谱研究 [J]. 茶叶通讯, 2016, 43(2):24−29. doi: 10.3969/j.issn.1009-525X.2016.02.006

    LIU S H, XU Y Q, LI C W, et al. Study on deepure instant Pu-erh tea from different years by HPLC fingerprint [J]. Journal of Tea Communication, 2016, 43(2): 24−29.(in Chinese) doi: 10.3969/j.issn.1009-525X.2016.02.006
    [17] 胡燕, 齐桂年. 四川黑茶的高效液相色谱指纹图谱研究 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):134−140.

    HU Y, QI G N. High performance liquid chromatographic fingerprinting of Sichuan dark tea [J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(1): 134−140.(in Chinese)
    [18] 郑起帆. 基于1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016

    ZHENG Q F. 1H-NMR-based metabolomics for Pu-erh raw tea from four different mountain origins[D]. Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese)
    [19] DAGLIA M, ANTIOCHIA R, SOBOLEV A, et al. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L. ) [J]. Food Research International, 2014, 63: 275−289. doi: 10.1016/j.foodres.2014.03.070
    [20] 王镜岩, 朱圣庚, 徐长法, 等. 生物化学[M]. 第3版. 北京: 高等教育出版社, 2002: 110-111.
    [21] 傅豪, 魏旭, 梁国鲁, 等. 茶树莽草酸代谢途径相关基因研究进展 [J]. 分子植物育种, 2021, 19(2):485−493.

    FU H, WEI X, LIANG G L, et al. Research progress on genes related to shikimic acid metabolism pathway in tea plant(Camellia sinensis) [J]. Molecular Plant Breeding, 2021, 19(2): 485−493.(in Chinese)
    [22] 向林, 陈龙清. 花香的基因工程研究进展 [J]. 中国农业科学, 2009, 42(6):2076−2084. doi: 10.3864/j.issn.0578-1752.2009.06.025

    XIANG L, CHEN L Q. Adavances in genetic engineering of floral scent [J]. Scientia Agricultura Sinica, 2009, 42(6): 2076−2084.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.06.025
    [23] ZHENG C, ZHAO L, WANG Y, et al. Integrated RNA-seq and sRNA-seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis) [J]. PLoS One, 2015, 10(4): e0125031. doi: 10.1371/journal.pone.0125031
    [24] ZHOU Y, ZENG L T, LIU X Y, et al. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing [J]. Food Chemistry, 2017, 231: 78−86. doi: 10.1016/j.foodchem.2017.03.122
    [25] GUI J D, FU X M, ZHOU Y, et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? [J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905−6914. doi: 10.1021/acs.jafc.5b02741
    [26] 唐邦明, 吴阳风, 陈迪, 等. 基于广泛靶向代谢组学的乌龙茶加工过程中差异代谢物分析 [J]. 食品科技, 2021, 46(11):81−89.

    TANG B M, WU Y F, CHEN D, et al. Analysis on differential metabolites of the samples from oolong tea production based on widely-targeted metabonomic approach [J]. Food Science and Technology, 2021, 46(11): 81−89.(in Chinese)
    [27] ZENG L T, ZHOU X C, SU X G, et al. Chinese oolong tea: An aromatic beverage produced under multiple stresses [J]. Trends in Food Science & Technology, 2020, 106: 242−253.
    [28] YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844−858. doi: 10.1080/10408398.2018.1552245
    [29] 邱晓红, 张丹丹, 韦航, 等. 基于PTR-TOF-MS与GC-MS技术的武夷水仙和武夷肉桂香气特征分析 [J]. 天然产物研究与开发, 2018, 30(7):1195−1201.

    QIU X H, ZHANG D D, WEI H, et al. Analysis of aroma of different varieties of Wuyi rock tea by PTR-TOF-MS and GC-MS [J]. Natural Product Research and Development, 2018, 30(7): 1195−1201.(in Chinese)
    [30] 邓慧莉. 武夷岩茶加工过程香气形成及糖苷酶基因表达的研究[D]. 福州: 福建农林大学, 2016

    DENG H L. Studies on aroma formation and glycosidase gene expression in Wuyi rock tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
    [31] 成晨. 乌龙茶连续慢速做青工艺研究[D]. 广州: 华南农业大学, 2019

    CHENG C. Study on continuous green-making technique of oolong tea with slow speed[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  343
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2021-12-29
  • 修回日期:  2022-04-20
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回