• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人参属植物叶绿体基因组特征及其进化的研究

刘潮 李敏 任怡园 钱柏霖 韩利红

刘潮,李敏,任怡园,等. 人参属植物叶绿体基因组特征及其进化的研究 [J]. 福建农业学报,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009
引用本文: 刘潮,李敏,任怡园,等. 人参属植物叶绿体基因组特征及其进化的研究 [J]. 福建农业学报,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009
LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009
Citation: LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009

人参属植物叶绿体基因组特征及其进化的研究

doi: 10.19303/j.issn.1008-0384.2022.007.009
基金项目: 国家自然科学基金项目(32060710、32100010)
详细信息
    作者简介:

    刘潮:刘 潮(1980-),男,博士,副教授,研究方向:植物系统发育与进化(E-mail:liuchao_80@163.com

    通讯作者:

    韩利红(1981-),女,博士,副教授,研究方向:真菌系统发育与进化(E-mail:hanlihong9527@126.com

  • 中图分类号: R 282

Characteristics and Evolution of Panax Chloroplast Genomes

  • 摘要:   目的  对人参属(Panax L.)物种叶绿体基因组特征及其系统发育进行研究,为我国人参属资源的遗传学研究和开发利用提供理论依据。  方法  基于14种人参属植物叶绿体基因组序列,利用生物信息学软件,对叶绿体基因组特征、序列重复、结构变异、基因进化和系统发育进行分析。  结果  人参属物种叶绿体基因组均为典型的四分体结构,包含114个unique基因。长重复序列主要为回文重复和正向重复,30~39 bp的重复序列最多,SSR大多为A/T重复,单核苷酸重复是最丰富的类型。人参属叶绿体基因组未发生基因重排,反向重复区(IR)与单拷贝区边界高度保守,鉴定的12个核苷酸高度可变热点中7个位于大单拷贝(LSC)区,5个位于小单拷贝(SSC)区。根据dN/dS比率,发现功能未知基因clpPycf1ycf2受正选择作用。系统发育分析显示,屏边三七和三叶参位于基部支系,四倍体人参和西洋参与其他二倍体物种聚在不同支系,三七、竹节参和越南参则亲缘关系较近。  结论  人参属叶绿体基因组基因数目和顺序一致,基因组结构保守,重复序列数目和类型存在差异,单拷贝区核苷酸多态性高于IR区,正选择基因可能与物种的生态适应性有关。
  • 图  1  人参属物种叶绿体基因组长重复序列类型及分布

    A:正向、回文、反向、互补重复数量;B:长重复类型及数量。

    Figure  1.  Types and distribution of long repeats in chloroplast genomes of Panax species

    A: Counts of forward, palindromic, reverse and complementary repeats; B: types and counts of long repeats.

    图  2  人参属物种叶绿体基因组SSR位点类型及分布

    A:单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸重复数量;B:SSR类型及数量。

    Figure  2.  Types and distribution of SSRs in chloroplast genomes of Panax species

    A: Counts of mono-, di-, tri-, tetra-, penta- and hexanucleotides; B: types and counts of SSR.

    图  3  人参属物种叶绿体基因组LSC、SSC和IRs边界比较

    Figure  3.  Borders of LSC, SSC, and IRs in chloroplast genomes of Panax species

    图  4  人参属物种叶绿体基因组序列比较

    Figure  4.  Sequences of chloroplast genomes of Panax species

    图  5  人参属物种叶绿体基因组序列多态性分析

    Figure  5.  Nucleotide diversity of chloroplast genomes of Panax species

    图  6  人参属叶绿体蛋白编码基因dN/dS分析

    Figure  6.  dN/dS ratios on protein coding genes of chloroplasts of Panax species

    图  7  基于IQ-TREE软件构建的人参属物种叶绿体基因组系统发育树

    Figure  7.  Phylogenetic tree of chloroplast genes of Panax species based on IQ-TREE

    表  1  人参属物种叶绿体基因组特征

    Table  1.   Chloroplast genomes of Panax species

    物种 Species登录号 Accession长度 Length/bpGC含量 GC content/%
    基因组 GenomeLSCSSCIR基因组 GenomeLSCSSCIR
    人参
    P. ginseng
    MK408938 156 241 86 128 18 077 26 018 38.07 36.27 32.18 43.10
    竹节参
    P. japonicus
    KP036469 156 188 86 199 18 013 25 988 38.07 36.29 32.21 43.05
    疙瘩七
    P. japonicus var. bipinnatifidus
    MK408962 156 244 86 186 18 006 26 026 38.06 36.28 32.21 43.05
    珠子参
    P. major
    MN496312 156 402 86 189 18 007 26 103 38.07 36.28 32.22 43.05
    三七
    P. notoginseng
    MK408945 156 319 86 157 18 004 26 079 38.07 36.27 32.23 43.07
    假人参
    P. pseudoginseng
    MW145449 156 074 86 124 18 008 25 971 38.06 36.27 32.22 43.06
    西洋参
    P. quinquefolius
    MK408953 156 070 86 077 17 993 26 000 38.07 36.27 32.22 43.08
    屏边三七
    P. stipuleanatus
    MK408965 156 007 86 083 18 150 25 887 38.04 36.26 32.07 43.08
    三叶参
    P. trifolius
    MF100782 156 157 86 322 18 047 25 894 38.08 36.27 32.26 43.10
    越南参
    P. vietnamensis
    KP036470 155 993 86 178 17 935 25 940 38.05 36.27 32.22 43.02
    野三七
    P. vietnamensis var. fuscidiscus
    MT798585 156 284 86 171 17 971 26 071 38.06 36.28 32.27 42.98
    越南参变种
    P. vietnamensis var. langbianensis
    MT798583 155 984 86 174 17 934 25 938 38.05 36.27 32.21 43.03
    峨眉三七
    P. wangianus
    MK408964 156 189 86 190 17 969 26 015 38.07 36.29 32.21 43.03
    姜状三七
    P. zingiberensis
    MK408969 156 192 86 116 17 966 26 055 38.07 36.31 32.27 43.00
    下载: 导出CSV

    表  2  基于位点模型的人参属叶绿体蛋白编码基因正选择分析

    Table  2.   Potential positive selection test on chloroplast genomes of Panax species based on site model

    基因
    Gene
    M1 vs M2M7 vs M8正选择位点
    Positively selected sites
    2ΔlnLP2ΔlnLP
    accD 2.39 3.0×10-1 2.47 2.9×10-1 139 Q, 0.505; 141 S, 0.517; 144 R, 0.528; 209 A, 0.856; 264 E, 0.504; 364 I, 0.507; 372 L, 0.526; 494 Q, 0.855
    atpF 3.37 1.9×10-1 3.42 1.8×10-1 14 W, 0.541; 77 Q, 0.537; 158 G, 0.854
    cemA 7.48 2.4×10-2 7.48 2.4×10-2 14 A, 0.547; 22 W, 0.538; 54 K, 0.536; 102 D, 0.533; 103 R, 0.544; 118 V, 0.973*; 205 F, 0.531; 208 W, 0.540
    clpP 13.40 1.2×10-3 13.40 1.2×10-3 38 P, 0.990*; 39 V, 0.622; 40 A, 0.935; 41 S, 0.612; 138 G, 0.629; 160 Q, 0.626
    matK 19.22 6.7×10-5 19.25 6.6×10-5 83 R, 0.994**
    ndhD 0.77 6.8×10-1 0.99 6.1×10-1 22 F, 0.830; 41 I, 0.829
    ndhF 19.81 5.0×10-5 20.29 3.9×10-5 17 P, 0.597; 123 R, 0.592; 133 T, 0.583; 223 F, 0.959*; 421 I, 0.964*; 463 Q, 0.591; 483 R, 0.569; 499 H, 0.552; 502 A, 0.965*; 511 Q, 0.591; 512 M, 0.526; 532 K, 0.559; 534 I, 0.962*; 572 N, 0.543; 598 D, 0.573; 606 F, 0.548; 621 L, 0.630; 641 I, 0.549; 642 G, 0.597; 657 G, 0.594; 670 A, 0.963*; 677 I, 0.532; 703 S, 0.548; 737 Y, 0.964*; 743 F, 0.537; 745 D, 0.958*; 746 L, 1.000**
    rbcL 15.94 3.5×10-4 16.10 3.2×10-4 225 L, 0.632; 226 Y, 0.969*; 230 A, 0.635; 270 I, 0.866; 281 A, 0.644; 328 S, 0.999**; 353 F, 0.584; 439 R, 0.968*; 472 V, 0.609; 474 I, 0.621; 478 V, 0.714
    rpl2 0 1 0 1 99 K, 0.651; 265 D, 0.650; 267 L, 0.652
    rpoA 14.53 7.0×10-4 14.56 6.9×10-4 34 L, 0.506; 256 E, 0.991**; 264 N, 0.999**; 272 S, 0.533; 320 A, 0.849; 337 L, 0.537
    rpoB 0.90 6.4×10-1 0.90 6.4×10-1 37 Y, 0.505; 165 R, 0.502; 193 R, 0.502; 295 I, 0.502; 365 T, 0.504; 459 S, 0.502; 695 K, 0.506; 735 T, 0.504; 935 D, 0.832
    rpoC2 0 1 0 1 85 Q, 0.736
    rps12 0 1 0.02 9.9×10-1 25 R, 0.502
    ycf1 75.81 0 75.78 0 205 K, 1.000**; 206 Y, 0.999**; 288 I, 0.876; 532 T, 0.803; 533 K, 0.956*; 604 R, 0.801; 624 R, 0.825; 668 I, 0.779; 685 W, 0.837; 699 V, 0.824; 701 Q, 0.802; 706 V, 0.814; 720 V, 0.856; 722 T, 0.814; 723 D, 0.808; 731 R, 0.982*; 733 K, 0.809; 734 I, 0.996**; 736 L, 0.855; 737 I, 0.803; 751 N, 0.760; 809 A, 0.828; 906 N, 0.768; 914 E, 0.795; 915 L, 0.788; 929 L, 0.835; 957 K, 0.979*; 1030 E, 0.979*; 1116 K, 0.804; 1172 M, 0.731; 1186 Q, 0.798; 1206 Q, 0.798; 1502 Q, 0.754; 1601 I, 1.000**; 1616 D, 0.773;
    1631 R, 0.814; 1652 R, 0.795; 1665 V, 0.738; 1685 E, 0.978*; 1710 I, 0.979*; 1739 R, 0.793
    ycf2 14.95 5.7×10-4 14.95 5.7×10-4 30 R, 0.767; 56 R, 0.770; 103 L, 0.765; 126 S, 0.765; 248 S, 0.769; 285 L, 0.765; 320 L, 0.766; 332 R, 0.764; 432 V, 0.765; 466 Y, 0.765; 573 I, 0.764; 598 L, 0.766; 606 M, 0.759; 759 F, 0.763; 850 S, 0.965*; 943 E, 0.764; 1037 P, 0.766; 1050 F, 0.765; 1064 S, 0.763; 1074 I, 0.965*; 1093 L, 0.767; 1101 N, 0.964*; 1171 W, 0.767; 1173 S, 0.765; 1245 P, 0.766; 1265 D, 0.762; 1309 D, 0.762; 1344 R, 0.764; 1422 L, 0.965*; 1431 F, 0.763; 1522 D, 0.767; 1550 Y, 0.766; 1656 N, 0.763; 1717 S, 0.768; 1799 R, 0.769; 2045 E, 0.764
    *和**分别表示正选择位点概率> 95%和> 99%。
    * and ** indicate that the probabilities of positively selected sites are > 95% and > 99%, respectively.
    下载: 导出CSV
  • [1] WEN J, ZIMMER E A. Phylogeny and biogeography of Panax L. (The Ginseng Genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA [J]. Molecular Phylogenetics and Evolution, 1996, 6(2): 167−177. doi: 10.1006/mpev.1996.0069
    [2] NGUYEN V B, LINH GIANG V N, WAMINAL N E, et al. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers [J]. Journal of Ginseng Research, 2020, 41(1): 135−144. doi: 10.1016/j.jgr.2018.06.003
    [3] NGUYEN V B, PARK H S, LEE S C, et al. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences [J]. Journal of Agricultural and Food Chemistry, 2017, 65(30): 6298−6306. doi: 10.1021/acs.jafc.7b00925
    [4] LI S, WANG P, YANG W Z, et al. Characterization of the components and pharmacological effects of mountain-cultivated ginseng and garden ginseng based on the integrative pharmacology strategy [J]. Frontiers in Pharmacology, 2021, 12: 659954. doi: 10.3389/fphar.2021.659954
    [5] SHIN B K, KWON S W, PARK J H. Chemical diversity of ginseng saponins from Panax ginseng [J]. Journal of Ginseng Research, 2015, 39(4): 287−298. doi: 10.1016/j.jgr.2014.12.005
    [6] CHOI H I, KIM N H, LEE J, et al. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags [J]. Genetic Resources and Crop Evolution, 2013, 60(4): 1377−1387. doi: 10.1007/s10722-012-9926-3
    [7] YANG Z J, LIU G Z, ZHANG G H, et al. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis [J]. Plant Biotechnology Journal, 2021, 19(5): 869−871. doi: 10.1111/pbi.13558
    [8] LIU C, CHEN H H, TANG L Z, et al. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae)[J]. Plant Diversity, 2022 , 44 (4): 377 − 388. DOI: 10.1016/j.pld.2021.11.009
    [9] 刘潮, 韩利红, 彭悦, 等. 黄丹木姜子叶绿体基因组特征分析 [J]. 南方农业学报, 2022, 53(1):12−20. doi: 10.3969/j.issn.2095-1191.2022.01.002

    LIU C, HAN L H, PENG Y, et al. Characteristics of chloroplast genome of Litsea elongata(wall. ex nees)Benth. et hook. F [J]. Journal of Southern Agriculture, 2022, 53(1): 12−20.(in Chinese) doi: 10.3969/j.issn.2095-1191.2022.01.002
    [10] 刘潮, 韩利红, 代小波, 等. 辣椒属叶绿体基因组特征及进化 [J]. 热带作物学报, 2022, 43(3):447−454. doi: 10.3969/j.issn.1000-2561.2022.03.002

    LIU C, HAN L H, DAI X B, et al. Characteristics and phylogenetics of the complete chloroplast genomes of Capsicum species [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 447−454.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.03.002
    [11] YU J J, FU J, FANG Y P, et al. Complete chloroplast genomes of Rubus species (Rosaceae) and comparative analysis within the genus [J]. BMC Genomics, 2022, 23(1): 32. doi: 10.1186/s12864-021-08225-6
    [12] 刘潮, 唐利洲, 韩利红. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育 [J]. 林业科学, 2021, 57(12):167−174.

    LIU C, TANG L Z, HAN L H. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Scientia Silvae Sinicae, 2021, 57(12): 167−174.(in Chinese)
    [13] LIU C K, YANG Z Y, YANG L F, et al. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae) [J]. Plant Diversity, 2018, 40(6): 265−276. doi: 10.1016/j.pld.2018.11.001
    [14] 岳杰. 四种人参属植物叶绿体全基因组结构及其系统发育分析[D]. 汉中: 陕西理工大学, 2021

    YUE J. Structural and phylogenetic analyses of the complete chloroplast genomes of four species within the genus Panax linn. [D]. Hanzhong: Shaanxi University of Technology, 2021. (in Chinese)
    [15] KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633−4642. doi: 10.1093/nar/29.22.4633
    [16] BEIER S, THIEL T, MÜNCH T, et al. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583−2585. doi: 10.1093/bioinformatics/btx198
    [17] AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics (Oxford, England), 2018, 34(17): 3030−3031. doi: 10.1093/bioinformatics/bty220
    [18] FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA: Computational tools for comparative genomics[J]. Nucleic Acids Research, 2004, 32(Web Server issue): W273-W279.
    [19] KATOH K, ROZEWICKI J, YAMADA K D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization [J]. Briefings in Bioinformatics, 2019, 20(4): 1160−1166. doi: 10.1093/bib/bbx108
    [20] ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
    [21] XU B, YANG Z H. PAMLX: A graphical user interface for PAML [J]. Molecular Biology and Evolution, 2013, 30(12): 2723−2724. doi: 10.1093/molbev/mst179
    [22] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530−1534. doi: 10.1093/molbev/msaa015
    [23] GANLEY A R D, KOBAYASHI T. Monitoring the rate and dynamics of concerted evolution in the ribosomal DNA repeats of Saccharomyces cerevisiae using experimental evolution [J]. Molecular Biology and Evolution, 2011, 28(10): 2883−2891. doi: 10.1093/molbev/msr117
    [24] ZEB U, DONG W L, ZHANG T T, et al. Comparative plastid genomics of Pinus species: Insights into sequence variations and phylogenetic relationships [J]. Journal of Systematics and Evolution, 2020, 58(2): 118−132. doi: 10.1111/jse.12492
    [25] ZHU B, QIAN F, HOU Y F, et al. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae) [J]. PLoS One, 2021, 16(3): e0248556. doi: 10.1371/journal.pone.0248556
    [26] LI D M, YE Y J, XU Y C, et al. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses [J]. PLoS One, 2020, 15(7): e0236590. doi: 10.1371/journal.pone.0236590
    [27] XU K W, LIN C X, LEE S Y, et al. Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: Insights into evolutionary dynamics and phylogenetic relationships [J]. BMC Genomics, 2022, 23(1): 203. doi: 10.1186/s12864-022-08397-9
    [28] KASHI Y, KING D G. Simple sequence repeats as advantageous mutators in evolution [J]. Trends in Genetics, 2006, 22(5): 253−259. doi: 10.1016/j.tig.2006.03.005
    [29] HAN C Y, DING R, ZONG X Y, et al. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae [J]. BMC Genomics, 2022, 23(1): 84. doi: 10.1186/s12864-022-08319-9
    [30] YAN J W, LI J H, YU L, et al. Comparative chloroplast genomes of Prunus subgenus Cerasus (Rosaceae): Insights into sequence variations and phylogenetic relationships [J]. Tree Genetics & Genomes, 2021, 17(6): 50.
    [31] 马孟莉, 张薇, 孟衡玲, 等. 草果叶绿体基因组特征及系统发育分析 [J]. 中草药, 2021, 52(19):6023−6031. doi: 10.7501/j.issn.0253-2670.2021.19.025

    MA M L, ZHANG W, MENG H L, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Amomum tsao-ko [J]. Chinese Traditional and Herbal Drugs, 2021, 52(19): 6023−6031.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.19.025
    [32] KIM K J. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng nees) and comparative analysis of sequence evolution among 17 vascular plants [J]. DNA Research, 2004, 11(4): 247−261. doi: 10.1093/dnares/11.4.247
    [33] LI R, MA P F, WEN J, et al. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications [J]. PLoS One, 2013, 8(10): e78568. doi: 10.1371/journal.pone.0078568
    [34] TROFIMOV D, CADAR D, SCHMIDT-CHANASIT J, et al. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex [J]. Scientific Reports, 2022, 12: 1120. doi: 10.1038/s41598-021-04635-4
    [35] YANG J, CHIANG Y C, HSU T W, et al. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan [J]. Scientific Reports, 2021, 11: 1152. doi: 10.1038/s41598-020-80143-1
    [36] NIU Y F, GAO C W, LIU J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes [J]. PeerJ, 2021, 9: e10774. doi: 10.7717/peerj.10774
    [37] GARUD N R, POLLARD K S. Population genetics in the human microbiome [J]. Trends in Genetics:TIG, 2020, 36(1): 53−67. doi: 10.1016/j.tig.2019.10.010
    [38] JI Y H, LIU C K, YANG Z Y, et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae) [J]. Molecular Ecology Resources, 2019, 19(5): 1333−1345. doi: 10.1111/1755-0998.13050
    [39] KIM N H, CHOI H I, KIM K H, et al. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag-simple sequence repeat bands in Panax ginseng Meyer [J]. Journal of Ginseng Research, 2014, 38(2): 130−135. doi: 10.1016/j.jgr.2013.12.005
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  166
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 录用日期:  2022-03-31
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回