• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甜橙硫氧还蛋白基因CsTRXh1克隆与表达分析

王淘 杨澄 闫亚娜 王雨潇 李瑞民

王淘,杨澄,闫亚娜,等. 甜橙硫氧还蛋白基因CsTRXh1克隆与表达分析 [J]. 福建农业学报,2022,37(7):880−885 doi: 10.19303/j.issn.1008-0384.2022.007.008
引用本文: 王淘,杨澄,闫亚娜,等. 甜橙硫氧还蛋白基因CsTRXh1克隆与表达分析 [J]. 福建农业学报,2022,37(7):880−885 doi: 10.19303/j.issn.1008-0384.2022.007.008
WANG T, YANG C, YAN Y N, et al. Cloning and Expression of a Thioredoxin Gene CsTRXh1 from Citrus sinensis [J]. Fujian Journal of Agricultural Sciences,2022,37(7):880−885 doi: 10.19303/j.issn.1008-0384.2022.007.008
Citation: WANG T, YANG C, YAN Y N, et al. Cloning and Expression of a Thioredoxin Gene CsTRXh1 from Citrus sinensis [J]. Fujian Journal of Agricultural Sciences,2022,37(7):880−885 doi: 10.19303/j.issn.1008-0384.2022.007.008

甜橙硫氧还蛋白基因CsTRXh1克隆与表达分析

doi: 10.19303/j.issn.1008-0384.2022.007.008
基金项目: 国家自然科学基金项目(32160621);江西省重大科技研发专项(20194ABC28007)
详细信息
    作者简介:

    王淘(2001-),女,研究方向:生物科学(E-mail:2879899484@qq.com

    通讯作者:

    李瑞民(1990-),男,博士,讲师,研究方向:耐黄龙病基因资源发掘与利用(E-mail:1600045@gnnu.edu.cn

  • 中图分类号: S 664.9

Cloning and Expression of a Thioredoxin Gene CsTRXh1 from Citrus sinensis

  • 摘要:   目的  通过甜橙硫氧还蛋白基因CsTRXh1克隆与表达分析,以期为解析甜橙硫氧还蛋白基因的功能及胁迫应答机制提供参考依据。  方法  基于甜橙基因组数据使用同源克隆法克隆甜橙硫氧还蛋白基因,利用生物信息学分析CsTRXh1蛋白与其他物种同源蛋白的相似性、系统进化和理化性质,使用qRT-PCR方法分析CsTRXh1基因在健康甜橙树和感染黄龙病甜橙树叶片中的表达模式,通过瞬时转化烟草叶片分析CsTRXh1蛋白在植物细胞中的亚细胞定位。  结果  获得1个甜橙硫氧还蛋白基因CsTRXh1,GenBank登录号为ON125405。蛋白质序列比对分析表明,CsTRXh1与其他植物来源的硫氧还蛋白具有较高的序列相似度,包含保守结构域Thioredoxin。聚类分析表明,CsTRXh1为h型硫氧还蛋白。表达分析结果表明,CsTRXh1基因在感染黄龙病甜橙叶片中上调表达。亚细胞定位分析表明,CsTRXh1定位于细胞质和细胞膜。  结论  CsTRXh1基因受黄龙病菌侵染诱导表达,推测CsTRXh1在黄龙病菌侵染柑橘过程中参与生理生化调控功能。
  • 图  1  CsTRXh1基因序列分析

    Figure  1.  Sequence analysis on CsTRXh1

    图  2  CsTRXh1及其同源蛋白序列比对

    图中蓝线标注序列区域为Thioredoxin保守结构域。

    Figure  2.  Multiple sequence alignment between CsTRXh1 and homology proteins

    Dark blue line indicates conserved thioredoxin domain.

    图  3  CsTRXh1及其同源蛋白系统发育分析

    Figure  3.  Phylogenetic analysis of CsTRXh1 and its homology proteins

    图  4  CsTRXh1基因在感染黄龙病与健康纽荷尔叶片中的表达分析

    **表示单因素ANOVA方差分析P值小于0.01。

    Figure  4.  Relative expressions of CsTRXh1 in leaves of healthy and Huanglongbing-infected Newhall trees

    ** indicates P<0.01 based on univariate ANOVA analysis.

    图  5  CsTRXh1蛋白的亚细胞定位分析

    绿色荧光场和叶绿体场激发波长为488 nm;白光场为可见光,叠加为绿色荧光场、白光场和叶绿体场图片重叠;Free GFP代表对照蛋白绿色荧光定位情况,CsTRXh1代表目的蛋白绿色荧光定位情况。

    Figure  5.  Subcellular location of CsTRXh1

    The excitation wavelength of GFP field and Chloroplast field was 488 nm; the bright field was visible light, and the GFP field, bright field and chloroplast field were merged to generate an overlapped image. Free GFP stands for the location of control green fluorescent protein, CsTRXh1 stands for the location of CsTRXh1.

    表  1  基因CsTRXh1克隆、定量分析和载体构建所用引物序列

    Table  1.   Primer sequence used for cloning, expression analysis, and vector construction of CsTRXh1

    引物名称       
    Primer names     
    引物序列(5'-3')          
    Prime sequences          
    退火温度
    Tm/℃
    用途
    Usage
    CsTRXh1-F ATGGCAGCAGCAGAAGAGGG 61.2 基因克隆
    Gene cloning
    CsTRXh1-R TTAGGCAGAGGCAGTTGCCAG
    CsTRXh1-2300-F AGAACACGGGGGACGAGCTCATGGCAGCAGCAGAAGAGGG 60.9 植物双元表达载体构建
    Construction of
    plant binary expression vector
    CsTRXh1-2300-R ACCATGGTGTCGACTCTAGAGGCAGAGGCAGTTGCCAG
    CsTRXh1-q-F GCCGTTTCATTGCTCCTTTC 56.6 实时荧光定量
    Real time fluorescence quantification
    CsTRXh1-q-F AGTCAGTGGCAACACTCTTC
    GAPDH-F GAAAGGTCTTGCCTGCTTTG 56.8 内参
    Internal reference
    GAPDH-R TCCTTCTCCAGCCTCACTGT
    表中下划线标注分别为Sac I、Xba I酶切位点。
    Recognition site of Sac I, Xba I enzyme are underlined.
    下载: 导出CSV

    表  2  CsTRXh1蛋白的二级结构组成

    Table  2.   Secondary structure of CsTRXh1

    类型
    Type
    位点数量
    Number
    比例
    Ratio /%
    α-螺旋 Alpha helix5747.90
    延伸链 Extended strand2319.33
    β-转角 Beta turn1210.08
    无规则卷曲 Random coil2722.69
    下载: 导出CSV
  • [1] WANG N. The Citrus huanglongbing crisis and potential solutions [J]. Molecular Plant, 2019, 12(5): 607−609. doi: 10.1016/j.molp.2019.03.008
    [2] MA W X, PANG Z Q, HUANG X E, et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin [J]. Nature Communications, 2022, 13: 529. doi: 10.1038/s41467-022-28189-9
    [3] GELHAYE E, ROUHIER N, NAVROT N, et al. The plant thioredoxin system [J]. Cellular and Molecular Life Sciences CMLS, 2005, 62(1): 24−35. doi: 10.1007/s00018-004-4296-4
    [4] LEE M Y, SHIN K H, KIM Y K, et al. Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots [J]. Plant Physiology, 2005, 139(4): 1881−1889. doi: 10.1104/pp.105.067884
    [5] SWEAT T A, WOLPERT T J. Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis [J]. The Plant Cell, 2007, 19(2): 673−687. doi: 10.1105/tpc.106.047563
    [6] MENG L, WONG J H, FELDMAN L J, et al. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3900−3905. doi: 10.1073/pnas.0913759107
    [7] ZHANG C J, ZHAO B C, GE W N, et al. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice [J]. Plant Physiology, 2011, 157(4): 1884−1899. doi: 10.1104/pp.111.182808
    [8] JI M G, PARK H J, CHA J Y, et al. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance [J]. Plant Physiology and Biochemistry, 2020, 147: 313−321. doi: 10.1016/j.plaphy.2019.12.032
    [9] WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods in Molecular Biology (Clifton, N J), 1999, 112: 531−552.
    [10] GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Computer Applications in the Biosciences:CABIOS, 1995, 11(6): 681−684.
    [11] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
    [12] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [13] WASZCZAK C, CARMODY M, KANGASJÄRVI J. Reactive oxygen species in plant signaling [J]. Annual Review of Plant Biology, 2018, 69: 209−236. doi: 10.1146/annurev-arplant-042817-040322
    [14] 邱金龙, 金巧玲, 王钧. 活性氧与植物抗病反应 [J]. 植物生理学通讯, 1998, 34(1):56−63.

    QIU J L, JIN Q L, WANG J. Activity of oxygen and plant disease resistance [J]. Plant Physiology Communications, 1998, 34(1): 56−63.(in Chinese)
    [15] PITINO M, ARMSTRONG C M, DUAN Y P. Molecular mechanisms behind the accumulation of ATP and H2O2 in citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. Horticulture Research, 2017, 4: 17040. doi: 10.1038/hortres.2017.40
    [16] MHAMDI A, NOCTOR G, BAKER A. Plant catalases: Peroxisomal redox guardians [J]. Archives of Biochemistry and Biophysics, 2012, 525(2): 181−194. doi: 10.1016/j.abb.2012.04.015
    [17] MATA-PÉREZ C, SPOEL S H. Thioredoxin-mediated redox signalling in plant immunity [J]. Plant Science, 2019, 279: 27−33. doi: 10.1016/j.plantsci.2018.05.001
    [18] CLARK K J, PANG Z Q, TRINH J, et al. Sec-delivered effector 1 (SDE1) of 'Candidatus Liberibacter asiaticus' promotes Citrus huanglongbing [J]. Molecular Plant-Microbe Interactions:MPMI, 2020, 33(12): 1394−1404. doi: 10.1094/MPMI-05-20-0123-R
    [19] FAN J, CHEN C X, YU Q B, et al. Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. Molecular Plant-Microbe Interactions:MPMI, 2012, 25(11): 1396−1407. doi: 10.1094/MPMI-06-12-0150-R
    [20] LIAO H L, BURNS J K. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit [J]. Journal of Experimental Botany, 2012, 63(8): 3307−3319. doi: 10.1093/jxb/ers070
    [21] HU Y, ZHONG X, LIU X L, et al. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. PLoS One, 2017, 12(12): e0189229. doi: 10.1371/journal.pone.0189229
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  115
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-26
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回