Effects of Interactions between AM Fungi and Nitrogen in Soil on Biomass and N-P Uptake of Sorghum Plants
-
摘要:
目的 氮沉降是影响陆地生态系统稳定的主要胁迫之一。研究氮沉降背景下丛枝菌根(Arbuscular mycorrhizal,AM)真菌对植物的生长影响,为全球气候变化背景下AM真菌生理生态学研究提供科学依据。 方法 采用完全随机设计,利用盆栽试验对高粱(Sorghum hicolor L. Mocrnch)幼苗设置接种AM(Glomus mosseae)菌剂和AM灭活菌剂(对照),氮水平处理包括0 mg·kg−1(N0)、200 mg·kg−1(N1)、400 mg·kg−1(N2)、500 mg·kg−1(N3)的NH4NO3。生长2周后进行菌根侵染率测定,在高粱植物完成生活史(16周)后进行植株生物量及氮磷含量的测定。 结果 ①接种AM真菌显著提高了高粱根系的菌根侵染率(P<0.001),且随着氮添加浓度的增加,菌根侵染率逐渐降低。②在未施氮处理(N0)中,接种AM真菌显著促进了高粱地上生物量及总生物量(P<0.05),而在高浓度氮添加(N3)下,接种AM真菌显著抑制了高粱地上生物量及总生物量(P<0.05)。③在未施氮处理(N0)中,接种AM真菌显著促进了高粱植物的氮、磷含量及组织氮磷比(P< 0.05),而在N2和N3氮水平下,接种AM真菌显著抑制了高粱组织的氮、磷含量及组织氮磷比(P<0.05),尽管磷含量在N2水平无显著差异(P>0.05)。④高粱的菌根生长效应(MGR)、菌根氮吸收效应(MNR)及菌根磷吸收效应(MPR)均随着氮梯度的增加逐渐由正效应转为负效应。 结论 AM真菌接种和氮添加对高粱生物量及组织氮磷吸收存在显著的交互效应。AM真菌在低氮水平下有利于高粱生物量及组织氮磷含量的增加,随着氮添加量的不断增加,菌根效应逐渐由正效应转为负效应,说明在高氮水平下AM真菌不利于高粱生长。 Abstract:Objective Effects of the widely distributed, important plant growth and stress resistance regulating arbuscular mycorrhizal (AM) fungi on sorghum growth under varied nitrogen (N) deposition in soil were studied on the terrestrial ecosystem. Method Growth of Sorghum hicolor (L.) Mocrnch seedlings inoculated with either Glomus mosseae or inactivated G. mosseae (CK) in pots under varied N addition of 0, 200, 400, or 500 mg·kg-1 (refer to as N0, N1, N2, and N3, respectively) in a greenhouse was monitored. Mycorrhizal colonization in rhizosphere soils was determined after two weeks, while the biomass, N, and P of the plants in 16 weeks of cultivation. Result ① The AM fungi inoculation significantly increased the mycorrhizal colonization on sorghum roots (P<0.001) at a decreasing trend with increasing N addition. ② Both the aboveground and total biomasses of the sorghum plants grown under N0 were significantly enhanced by the presence of the AM fungi but inhibited by it under N3 (P<0.05). ③ Similarly, AM fungi increased the N and P contents and N/P ratio in the plant tissues by N0 but did the opposite under either N2 or N3 (P<0.05). However, under N2 the AM fungal inoculation exerted no significant effect on P content (P>0.05). And ④ the mycorrhizal growth effect (MGR), mycorrhizal N-uptake effect (MNR), and mycorrhizal P-uptake effect (MPR) on sorghum changed from positive to negative gradually as the N addition increased. Conclusion Inoculating AM fungi on sorghum seedlings and adding N in soil interactively affected the biomass and N-P uptake of the plants significantly. Without N addition, the AM fungi enhanced the accumulation of biomass, N, and P, but N addition maximized the mycorrhizal effect at certain level. High levels of N in soil could be detrimental to the growth of AM fungi and altered the symbiosis. -
Key words:
- AM fungi /
- nitrogen deposition /
- Sorghum hicolor (L.) Mocrnch /
- biomass /
- N and P uptake /
- mycorrhizal response
-
图 1 不同氮水平下接种AM真菌对高粱生物量的影响
ns,P >0.05;* ,P <0.05;**,P <0.01;*** P <0.001。红星表示在同一个氮梯度下接种和不接种AM真菌之间差异达到显著水平(P ≤ 0.05)。图2同。
Figure 1. Effect of AM fungi inoculation on sorghum biomass with varied N deposition in soil
ns: significant difference (P>0.05), *: significant difference at P<0.05, **: significant difference at P <0.01, ***: significant difference at P <0.001. Red stars indicate significant differences on biomass of sorghum with or without AM fungi inoculation that grew on soil of same N level at P≤0.05. Same for Fig.2.
图 3 不同氮水平下高粱的菌根生长效应(a)、菌根氮吸收效应(b)和菌根磷吸收效应(c)
*表示菌根效应差异达到显著水平(P≤0.05);红实线代表菌根效应原始变量和氮添加梯度之间线性回归拟合直线(P≤0.05)。
Figure 3. MGR (a), MNR (b), and MPR (c) of sorghum plants grown on soils with varied N deposition
* indicates significance at P≤0.05; red solid line represents regression between mycorrhizal effect and N addition at P≤0.05.
表 1 不同处理下高粱菌根侵染状况
Table 1. AM fungi colonization on inoculated sorghum plants grown on soil with varied N deposition
氮添加
Nitrogen additionAMF
(+/−)菌根侵染率
Mycorrhiza
colonization/
%丛枝侵染率
Arbuscular
colonization/
%泡囊侵染率
Vesicles
colonization/
%N0 + 57.15 ± 1.70 a 13.25 ± 0.89 23.86 ± 1.45 a N1 + 44.01 ± 1.89 b 11.52 ± 1.33 24.10 ± 1.40 a N2 + 31.71 ± 3.55 c 9.14 ± 1.28 17.50 ± 0.57 b N3 + 33.31 ± 0.67 c 10.25 ± 1.05 19.72 ± 1.97 b N0 − 0 ± 0 0 ± 0 0 ± 0 N1 − 0 ± 0 0 ± 0 0 ± 0 N2 − 0 ± 0 0 ± 0 0 ± 0 N3 − 0 ± 0 0 ± 0 0 ± 0 处理效应 Treatment effect 氮添加
N additionF值F value 44.57 1.47 19.24 P值P value <0.001 0.237 <0.001 真菌接种
AM colonizationF值F value 3101.01 235.49 259.13 P值P value <0.001 <0.001 <0.001 表中数据为均值±标准误;数据后不同小写字母表示不同氮添加量处理之间差异显著(P<0.05)。
Data are mean ± standard error; different letters represent significant differences between groups (P<0.05). -
[1] 许稳. 中国大气活性氮干湿沉降与大气污染减排效应研究[D]. 北京: 中国农业大学, 2016XU W. Studies on dry and wet deposition of atmospheric reactive nitrogen and air pollution control effects in China[D]. Beijing: China Agricultural University, 2016. (in Chinese) [2] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析 [J]. 中国环境科学, 2014, 34(5):1089−1097.ZHENG D N, WANG X S, XIE S D, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089−1097.(in Chinese) [3] 徐丽, 杨雁茹, 张军辉, 等. 模拟氮沉降增加对中国陆地生态系统土壤呼吸Q10的影响 [J]. 生态学杂志, 2019, 38(5):1560−1569.XU L, YANG Y R, ZHANG J H, et al. Effects of simulated N deposition on Q10 of soil respiration in Chinese terrestrial ecosystems [J]. Chinese Journal of Ecology, 2019, 38(5): 1560−1569.(in Chinese) [4] 王洪义, 常继方, 王正文. 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应 [J]. 中国农业科学, 2020, 53(13):2604−2613. doi: 10.3864/j.issn.0578-1752.2020.13.009WANG H Y, CHANG J F, WANG Z W. Responses of community species diversity and productivity to nitrogen and Phosphorus addition during restoration of degraded grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2604−2613.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.13.009 [5] 蒯晓妍, 邢鹏飞, 张晓琳, 等. 短期不同水平氮添加对农牧交错带草地植物群落多样性和生产力的影响 [J]. 中国草地学报, 2019, 41(5):104−110.KUAI X Y, XING P F, ZHANG X L, et al. Effects of short-term nitrogen addition on plant community diversity and productivity of grassland in agro-pastoral ecotone [J]. Chinese Journal of Grassland, 2019, 41(5): 104−110.(in Chinese) [6] 王玉冰, 孙毅寒, 丁威, 等. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径 [J]. 植物生态学报, 2020, 44(1):22−32. doi: 10.17521/cjpe.2019.0260WANG Y B, SUN Y H, DING W, et al. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chinese Journal of Plant Ecology, 2020, 44(1): 22−32.(in Chinese) doi: 10.17521/cjpe.2019.0260 [7] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 3rd Edition. London: Academic Press, 2008: 13. [8] SELOSSE M A, ROUSSET F. Evolution. The plant-fungal marketplace [J]. Science, 2011, 333(6044): 828−829. doi: 10.1126/science.1210722 [9] HAN Y F, FENG J G, HAN M G, et al. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis [J]. Global Change Biology, 2020, 26(12): 7229−7241. doi: 10.1111/gcb.15369 [10] JOHNSON N C, ROWLAND D L, CORKIDI L, et al. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas [J]. Ecology, 2008, 89(10): 2868−2878. doi: 10.1890/07-1394.1 [11] JIANG S J, LIU Y J, LUO J J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem [J]. The New Phytologist, 2018, 220(4): 1222−1235. doi: 10.1111/nph.15112 [12] 张旭红, 朱永官, 王幼珊, 等. 不同施肥处理对丛枝菌根真菌生态分布的影响 [J]. 生态学报, 2006, 26(9):3081−3087. doi: 10.3321/j.issn:1000-0933.2006.09.038ZHANG X H, ZHU Y G, WANG Y S, et al. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in Northeast China [J]. Acta Ecologica Sinica, 2006, 26(9): 3081−3087.(in Chinese) doi: 10.3321/j.issn:1000-0933.2006.09.038 [13] BAHADUR A, JIN Z C, LONG X L, et al. Arbuscular mycorrhizal fungi alter plant interspecific interaction under nitrogen fertilization [J]. European Journal of Soil Biology, 2019, 93: 103094. doi: 10.1016/j.ejsobi.2019.103094 [14] MCGONIGLE T P, MILLER M H, EVANS D G, et al. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi [J]. New Phytologist, 1990, 115(3): 495−501. doi: 10.1111/j.1469-8137.1990.tb00476.x [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] VEIGA R S L, JANSA J, FROSSARD E, et al. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? [J]. PLoS One, 2011, 6(12): e27825. doi: 10.1371/journal.pone.0027825 [17] 王晓英, 王冬梅, 陈保冬, 等. 丛枝菌根真菌群落对白三叶草生长的影响 [J]. 生态学报, 2010, 30(6):1456−1462.WANG X Y, WANG D M, CHEN B D, et al. Growth response of white clover to inoculation with different Arbuscular mycorrhizal fungi communities [J]. Acta Ecologica Sinica, 2010, 30(6): 1456−1462.(in Chinese) [18] 田蜜, 陈应龙, 李敏, 等. 丛枝菌根结构与功能研究进展 [J]. 应用生态学报, 2013, 24(8):2369−2376. doi: 10.13287/j.1001-9332.2013.0364TIAN M, CHEN Y L, LI M, et al. Structure and function of arbuscular mycorrhiza: A review [J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2369−2376.(in Chinese) doi: 10.13287/j.1001-9332.2013.0364 [19] 王振楠, 杨美玲, 刘鸯, 等. 丛枝菌根真菌对红花生长及根际土壤微环境的影响 [J]. 江苏农业学报, 2016, 32(4):904−909. doi: 10.3969/j.issn.1000-4440.2016.04.030WANG Z N, YANG M L, LIU Y, et al. Effects of arbuscular mycorrhization on the growth of safflower and the microenvironment of rhizosphere soil [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(4): 904−909.(in Chinese) doi: 10.3969/j.issn.1000-4440.2016.04.030 [20] JAITIENG S, SINMA K, RUNGCHAROENTHONG P, et al. Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee [J]. Soil Science and Plant Nutrition, 2021, 67(1): 97−101. doi: 10.1080/00380768.2020.1848343 [21] YANG G W, LIU N, LU W J, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability [J]. Journal of Ecology, 2014, 102(4): 1072−1082. doi: 10.1111/1365-2745.12249 [22] 王淼焱, 徐倩, 刘润进. 长期定位施肥土壤中AM真菌对寄主植物的侵染状况 [J]. 菌物学报, 2006, 25(1):131−137.WANG M Y, XU Q, LIU R J. Colonization status of arbuscular mycorrhizal fungi on host plants grown in long-term fixed fertilization field [J]. Mycosystema, 2006, 25(1): 131−137.(in Chinese) [23] VAN DIEPEN L T A, LILLESKOV E A, PREGITZER K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests [J]. Molecular Ecology, 2011, 20(4): 799−811. doi: 10.1111/j.1365-294X.2010.04969.x [24] 张彩丽. AM真菌和施氮量对五味子生长和化学成分的交互效应[D]. 保定: 河北大学, 2006ZHANG C L. Effects of AM fungi on the growth and chemical composition of Schisandra chinesis under different nitrogen levels[D]. Baoding: Hebei University, 2006. (in Chinese) [25] 李国军. 大量营养元素对玉米苗期铬吸收及生理特性的影响研究[D]. 太原: 山西大学, 2010LI G J. Effect of macronutrient on chromium absorption and physiological characteristics of maize seedlings[D]. Taiyuan: Shanxi University, 2010. (in Chinese) [26] 甄莉娜, 王润梅, 杨俊霞, 等. 丛枝菌根真菌与氮肥对羊草生长的影响 [J]. 中国草地学报, 2018, 40(3):49−54.ZHEN L N, WANG R M, YANG J X, et al. Effects of arbuscular mycorrhizal fungi and nitrogen fertilizer on the growth of Leymus chinensis [J]. Chinese Journal of Grassland, 2018, 40(3): 49−54.(in Chinese) [27] 徐如玉, 左明雪, 袁银龙, 等. 增施摩西管柄囊霉对甜玉米氮肥增效及土壤丛枝菌根真菌多样性的影响 [J]. 福建农业学报, 2020, 35(4):379−391. doi: 10.19303/j.issn.1008-0384.2020.04.004XU R Y, ZUO M X, YUAN Y L, et al. Effects of Funneliformis mosseae application on nitrogen utilization by sweet corn and AM fungi diversity in soil [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 379−391.(in Chinese) doi: 10.19303/j.issn.1008-0384.2020.04.004 [28] 贾艳艳, 杨文飞, 杜小凤, 等. 接种AM真菌和施氮对还田稻秆氮素释放和小麦产量的影响 [J]. 江西农业学报, 2020, 32(3):8−13.JIA Y Y, YANG W F, DU X F, et al. Effects of AM fungi inoculation and nitrogen application on rice-straw nitrogen release and wheat yield [J]. Acta Agriculturae Jiangxi, 2020, 32(3): 8−13.(in Chinese) [29] 蔺吉祥, 杨雨衡, 王英男, 等. 氮沉降对植物-丛枝菌根共生体影响的研究进展 [J]. 草原与草坪, 2015, 35(3):88−94. doi: 10.3969/j.issn.1009-5500.2015.03.018LIN J X, YANG Y H, WANG Y N, et al. Research progress on effects of nitrogen deposition on symbiont of plant-Arbuscular mycorrhizal [J]. Grassland and Turf, 2015, 35(3): 88−94.(in Chinese) doi: 10.3969/j.issn.1009-5500.2015.03.018 [30] GEORGE E, MARSCHNER H, JAKOBSEN I. Role of arbuscular mycorrhizal fungi in uptake of Phosphorus and nitrogen from soil [J]. Critical Reviews in Biotechnology, 1995, 15(3/4): 257−270. [31] JOHNSON N C, ROWLAND D L, CORKIDI L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands [J]. Ecology, 2003, 84(7): 1895−1908. doi: 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2 [32] FRATER P N, BORER E T, FAY P A, et al. Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium [J]. Plant and Soil, 2018, 425(1): 493−506. [33] 王红新, 李富平, 国巧真, 等. AM真菌生长发育影响因素及其对植物作用的研究 [J]. 土壤肥料, 2006(1):52−56.WANG H X, LI F P, GUO Q Z, et al. The growth influence factor of AM and the function of it for the plants [J]. Soil and Fertilizer Sciences in China, 2006(1): 52−56.(in Chinese) [34] 黄彬彬, 邢亚娟, 闫国永, 等. 兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应 [J]. 生态环境学报, 2019, 28(3):446−454.HUANG B B, XING Y J, YAN G Y, et al. Response of GRSP content to interannual simulated nitrogen deposition in Larix gmelinii forest in greater khingan mountains [J]. Ecology and Environmental Sciences, 2019, 28(3): 446−454.(in Chinese)