Cloning and Analyzing of AP3-3 and Its Promoter from Dendrobium officinale
-
摘要:
目的 AP3-3属于MADS-box基因家族B类基因,参与兰科植物花被和唇瓣的形成,克隆该基因并进行启动子分析可以进一步研究该基因的生物学功能及其启动子调控作用机制。 方法 使用RT-PCR和常规PCR技术克隆铁皮石斛DoAP3-3基因及其启动子序列,进行生物信息学分析,构建启动子缺失片段与GUS基因融合表达载体,农杆菌介导转化铁皮石斛原球茎,进行瞬时表达。 结果 DoAP3-3基因cDNA长度为675 bp,编码蛋白质的分子式为C1129H1803N333O347S12,分子量25.98 kDa,pI为 8.71,不稳定性指数40.14,GRAVY为−0.823,不存在跨膜区域,亚细胞定位预测得分为细胞核87.0%、线粒体8.7%、细胞质4.3%。启动子片段长度1885 bp,顺式作用元件含有大量的光响应元件等;3个启动子片段均可驱动GUS基因表达,表达强度为−1885~0 bp>−1604~0 bp>−750~0 bp。 结论 DoAP3-3蛋白具有碱性、亲水性和不稳定性,无跨膜结构域,亚细胞定位于细胞核中。DoAP3-3启动子可能受光照、植物激素、MYB转录蛋白等多个因素调控,具备启动活性,且随启动子缺失长度减少呈现增加趋势。 Abstract:Objective AP3-3 of class B gene of MADS box family that involves in the formation of perianth and labellum of Dendrobium officinale was cloned to study the biological function, and the promoter analyzed to decipher the regulation mechanism. Method Sequences of AP3-3 and promoter of D. officinale were cloned by RT-PCR and conventional PCR, and bioinformatics analyzed. A fusion expression vector of promoter-deleted fragments and GUS gene was constructed. Agrobacterium tumefaciens-mediated transformation was used to transform protocorm of D. officinale for the transient expression. Result The cDNA length of DoAP3-3 was 675 bp with an encoded formula of C1129H1803N333O347S12, a molecular weight of 25.98 kDa, a PI of 8.71, an instability index of 40.14, and GRAVY of −0.823. There was no transmembrane region detected in the protein. The predicted score of subcellular localization was 87.0% in nucleus, 8.7% in mitochondria, and 4.3% in cytoplasm. The 1885 bp promoter fragment had a cis acting element containing a significant number of photo-responsive elements among others. The 3 promoter fragments could drive GUS with an order of expression intensity of −885–0 bp>−1 604–0 bp>−750–0 bp. Conclusion The predicted DoAP3-3 was an alkali, hydrophilic, and unstable protein with no transmembrane domain and a subcellular localization in the nucleus. The DoAP3-3 promoter might be regulated by light, plant hormones, MYB transcription protein, etc., and exhibited activities that increased with decreasing deletion length. -
Key words:
- Dendrobium officinale /
- AP3-3 /
- cDNA /
- promoter /
- cloning /
- sequence analysis
-
图 6 启动子融合GUS重组载体构建
A:启动子扩增电泳图(M:DNA marker DL6000;1:DoAP3-3-1885;2:DoAP3-3-1604;3:DoAP3-3-750);B:菌落PCR电泳(M:DNA marker DL6000;1:pB-DoAP3-3-A;2:pB-DoAP3-3-B;3:pB-DoAP3-3-C)。
Figure 6. Construction of fusion recombinant vector of promoter and GUS
A: promoter amplification electrophoresis (M: DNA marker DL6000; 1: DoAP3-3-1885; 2: DoAP3-3-1604; 3: DoAP3-3-750); B: colony PCR electrophoresis (M: DNA marker DL6000; 1: pB-DoAP3-3-A; 2: pB-DoAP3-3-B; 3: pB-DoAP3-3-C).
表 1 PCR引物信息
Table 1. PCR Primer information
引物名称
Primer name引物序列(5′→3′)
Primer sequence用途
Usage产物大小
Amplicon size/bpDoAP3-3 (F) TATCTTCCCCCTCCCCAT 基因克隆Gene cloning 675 DoAP3-3 (R) ATCTTCGTCTCGCTTGA DoAP3-3-promoter (F) CGCCGTTACCTGCGTCGTTC 启动子克隆Promoter cloning 1885 DoAP3-3-promoter (R) CCTGATCACTTCTTCTCCTC DoAP3-3-promoter-A (F) CAGTGGTCTCATAGACGCCGTTACCTGCGTCGTTC 启动子表达载体构建Construction of expression vector driven by DoAP 3-3 promoter 1885 DoAP3-3-promoter-B (F) CAGTGGTCTCATAGAGTTGGACAAAACTTTGAGAT 1604 DoAP3-3-promoter-C (F) CAGTGGTCTCATAGACAGTGATTTAAGGGGAATGG 750 DoAP3-3-promoter (R) CAGTGGTCTCAGTTGCCTGATCACTTCTTCTCCTC GUS-promoter-A (F) GAAGTTGAAGACCAATAAACT 检测启动子是否与GUS连接Detection of whether the DoAP3-3 promoter is connected to GUS 630 GUS-promoter-B (F) GCTGATGAATTTTTAAAATTCT 568 GUS-promoter-C (F) GATATTATGAAGCGTGAATG 374 GUS-promoter (R) ATAAAAAGAGAAAAGGGTCCTAACC 下划线为Eco31 I酶识别位点。
Recognition site of Eco31 I enzyme is underlined.表 2 DoAP3-3启动子顺式作用元件预测分析
Table 2. Predicted DoAP3-3 promoter cis-acting element
顺式作用元件
Cis-acting
elements位置(+/−链)
Position from
ATG/bp核心序列
Core sequence功能
FunctionAAGAA-motif 33 GAAAGAA 涉及脱落酸反应的顺式作用元件 Cis-acting element involved in abscisic acid reaction ACE 1479 CTAACGTATT 参与光响应的顺式作用元件 Cis-acting element involved in light responsiveness Box 4 1519, 898, 1331,
450, 1406, 708ATTAAT 参与光响应的保守DNA模块的一部分 Part of a conserved DNA module involved in light responsiveness CAT-box 674 GCCACT 与分生组织表达相关的顺式作用调控元件 Cis-acting regulatory element related to meristem expression GATA-motif 270 AAGGATAAGG 光响应元件的一部分 Part of a light responsive element GT1-motif 1115, 1652 GGTTAA 光响应元件 Light responsive element GTGGC-motif 1636 CATCGTGTGGC 光响应元件的一部分 Part of a light responsive element I-box 268 GATAAGGCG 光响应元件的一部分 Part of a light responsive element MBS 19 CAACTG MYB结合位点参与干旱诱导 MYB binding site involved in drought-inducibility MRE 1655 AACCTAA MYB结合位点参与光响应 MYB binding site involved in light responsiveness P-box 1708 CCTTTTG 赤霉素反应元件 Gibberellin-responsive element TATA-box 1360, 1003, 1728,
1001, 977, 917, 336TATATA 转录起始核心元件 Core promoter element of transcription start TGA-element 1866 AACGAC 生长素反应元件 Auxin-responsive element W box 1797 TTGACC 水杨酸响应元件 Salicylic acid-responsive element -
[1] LITT A, KRAMER E M. The ABC model and the diversification of floral organ identity [J]. Seminars in Cell & Developmental Biology, 2010, 21(1): 129−137. [2] 王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展 [J]. 浙江农业学报, 2021, 33(6):1149−1158.WANG Y, MU Y X, WANG J. Research progress of floral development regulation by MADS-box gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149−1158.(in Chinese) [3] HUANG F Y, ZHANG Y H, HOU X L. BcAP3, a MADS box gene, controls stamen development and male sterility in Pak-choi (Brassica rapa ssp. chinensis) [J]. Gene, 2020, 747: 144698. doi: 10.1016/j.gene.2020.144698 [4] IRISH V. The ABC model of floral development [J]. Current Biology, 2017, 27(17): R887−R890. doi: 10.1016/j.cub.2017.03.045 [5] PAN Z J, CHENG C C, TSAI W C, et al. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth [J]. Plant and Cell Physiology, 2011, 52(9): 1515−1531. doi: 10.1093/pcp/pcr092 [6] DENG M H, LV J H, WANG Z R, et al. Two promoter regions confer heat-induced activation of SlDREBA4 in Solanum lycopersicum [J]. Biochemical and Biophysical Research Communications, 2020, 524(3): 689−695. doi: 10.1016/j.bbrc.2020.01.153 [7] 王树军, 刘保华, 孙进华, 等. 荔枝多酚氧化酶基因启动子克隆与功能分析 [J]. 果树学报, 2015, 32(3):427−433,524.WANG S J, LIU B H, SUN J H, et al. Cloning and function analysis of the promoter of PPO gene from Litchi(Litchi chinensis Sonn.) [J]. Journal of Fruit Science, 2015, 32(3): 427−433,524.(in Chinese) [8] HOU J J, JIANG P P, QI S M, et al. Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+-pyrophosphatase gene by deletion analysis in transgenic tobacco plants [J]. PLoS One, 2016, 11(4): e0154041. doi: 10.1371/journal.pone.0154041 [9] XIN S, TAO C C, LI H B. Cloning and functional analysis of the promoter of an ascorbate oxidase gene from Gossypium hirsutum [J]. PLoS One, 2016, 11(9): e0161695. doi: 10.1371/journal.pone.0161695 [10] 李泽卿. 二球悬铃木花发育基因PaAP3、PaPI和PaSTK启动子的克隆、功能分析及其在不育中的应用[D]. 武汉: 华中农业大学, 2017.LI Z Q. Cloning and functional analysis of the promoters of flower development genes PaAP3, PaPI and PaSTK in London plane tree and their application in sterility[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) [11] ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, et al. PlantCARE, a plant Cis-acting regulatory element database [J]. Nucleic Acids Research, 1999, 27(1): 295−296. doi: 10.1093/nar/27.1.295 [12] 张婷, 邢妮, 王超, 等. 小花草玉梅正常和自然变异植株的AP3-3基因研究 [J]. 西北植物学报, 2016, 36(2):231−240.ZHANG T, XING N, WANG C, et al. Cloning and sequence analysis of AP3-3 gene in normal plant and natural variant from Anemone rivularis var. flore-minore [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 231−240.(in Chinese) [13] JING D L, CHEN W W, SHI M, et al. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant [J]. Biochemical and Biophysical Research Communications, 2020, 523(1): 33−38. doi: 10.1016/j.bbrc.2019.11.177 [14] 李淑娴. 墨兰成花机理及花期调控技术研究[D]. 福州: 福建农林大学, 2016.LI S X. Mechanism of flower development and early flowering technique of Cymbidium sinense[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese) [15] 龚湉. 寒兰成花机理及花期调控研究[D]. 福州: 福建农林大学, 2015.GONG T. Mechanism of floral formation of Cymbidium kanran and flowering regulation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese) [16] MUNDY J, YAMAGUCHI-SHINOZAKI K, CHUA N H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene [J]. PNAS, 1990, 87(4): 1406−1410. doi: 10.1073/pnas.87.4.1406 [17] 李艳林, SHAHID IQBAL, 侍婷, 等. 梅PmARF17克隆及其在花发育中与内源激素的调控模式 [J]. 中国农业科学, 2021, 54(13):2843−2857. doi: 10.3864/j.issn.0578-1752.2021.13.013LI Y L, IQBAL S, SHI T, et al. Isolation of PmARF17 and its regulation pattern of endogenous hormones during flower development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843−2857.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.13.013 [18] POBORILOVA Z, PLCHOVA H, CEROVSKA N, et al. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors [J]. Plant Cell Reports, 2020, 39(9): 1115−1127. doi: 10.1007/s00299-020-02544-w