• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物氮素吸收、转运和同化的分子机制

段永康 杨海燕 吴文龙 李维林

段永康,杨海燕,吴文龙,等. 植物氮素吸收、转运和同化的分子机制 [J]. 福建农业学报,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016
引用本文: 段永康,杨海燕,吴文龙,等. 植物氮素吸收、转运和同化的分子机制 [J]. 福建农业学报,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016
DUAN Y K, YANG H Y, WU W L, et al. Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016
Citation: DUAN Y K, YANG H Y, WU W L, et al. Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016

植物氮素吸收、转运和同化的分子机制

doi: 10.19303/j.issn.1008-0384.2022.004.016
基金项目: 江苏省科技计划项目(BE2019399)
详细信息
    作者简介:

    段永康 (1997−),男,硕士研究生,主要从事黑莓高效栽培和生理生化研究(E-mail:1154304072@qq.com)

    通讯作者:

    杨海燕(1983−),女,博士,助理研究员,主要从事小浆果栽培生理等研究(E-mail:wlli@njfu.edu.cn

    李维林(1966−),男,博士,研究员,主要从事黑莓、蓝莓等小浆果栽培育种及生理生化研究(E-mail:wlli@njfu.edu.cn

  • 中图分类号: S 311

Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants

  • 摘要: 氮是植物生长过程中必需的矿质元素,对植物生长发育具有重要影响。外施氮肥可以促进植物生长,但氮肥的滥用会导致水土污染、臭氧层破坏和农业生产成本增加等问题。为提高氮素利用率,植物在演变过程中产生了一系列吸收、转运和同化氮素的分子机制。本文综述了植物对NO3-N、NH4+-N和有机态氮的分子调控机制,并阐明了转录因子和miRNA在氮素响应中的作用,旨在为提高氮素利用效率和农业生产力以及培育新品种提供参考。
  • [1] RAVEN J A, HANDLEY L L, ANDREWS M. Global aspects of C/N interactions determining plant-environment interactions [J]. Journal of Experimental Botany, 2004, 55(394): 11−25.
    [2] INOKUCHI R, KUMA K I, MIYATA T, et al. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives [J]. Physiologia Plantarum, 2002, 116(1): 1−11. doi: 10.1034/j.1399-3054.2002.1160101.x
    [3] CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417−423. doi: 10.1023/A:1027353305250
    [4] 郭伟, 樊存虎. 浅谈我国氮肥利用问题 [J]. 南方农机, 2021, 52(20):18−20. doi: 10.3969/j.issn.1672-3872.2021.20.005

    GUO W, FAN C H. Discussion on nitrogen fertilizer utilization in China [J]. South Agricultural Machinery, 2021, 52(20): 18−20.(in Chinese) doi: 10.3969/j.issn.1672-3872.2021.20.005
    [5] LI S T, HE P, JIN J Y. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture [J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1191−1197. doi: 10.1002/jsfa.5874
    [6] 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展 [J]. 植物生理学报, 2018, 54(9):1401−1408.

    WU J N, WEI X D, LI X, et al. Research progress in nitrogen use efficiency in plants [J]. Plant Physiology Journal, 2018, 54(9): 1401−1408.(in Chinese)
    [7] 王兴萌, 陈志豪, 李永春, 等. 氮素形态及配比对毛竹和青冈实生苗生长特性的影响 [J]. 生态学杂志, 2019, 38(09):2655−2661.

    WANG X M, CHEN Z H, LI Y C, et al. Effects of different nitrogen forms and ratios on the growth of Phyllostachys edulis and Quercus glauca seedlings [J]. Chinese Journal of Ecology, 2019, 38(09): 2655−2661.(in Chinese)
    [8] 彭正萍. 植物氮素吸收、运转和分配调控机制研究 [J]. 河北农业大学学报, 2019, 42(2):1−5.

    PENG Z P. Absorption, transportation and regulation of nitrogen element in plants [J]. Journal of Hebei Agricultural University, 2019, 42(2): 1−5.(in Chinese)
    [9] VON WIRÉN N, GAZZARRINI S, FROMMER W B. Regulation of mineral nitrogen uptake in plants [J]. Plant and Soil, 1997, 196(2): 191−199. doi: 10.1023/A:1004241722172
    [10] XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency [J]. Annual Review of Plant Biology, 2012, 63: 153−182. doi: 10.1146/annurev-arplant-042811-105532
    [11] SCHRADER L E, DOMSKA D, JUNG JR P E, et al. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L. )1 [J]. Agronomy Journal, 1972, 64(5): 690−695. doi: 10.2134/agronj1972.00021962006400050042x
    [12] 杨肖娥, 孙羲. 不同水稻品种NH4+和NO3-吸收的动力学 [J]. 土壤通报, 1991, 22(5):222−224.

    YANG X E, SUN X. Kinetics of NH4+ and NO3- uptake by different rice varieties [J]. Chinese Journal of Soil Science, 1991, 22(5): 222−224.(in Chinese)
    [13] 段娜, 章尧想, 刘芳, 等. 植物氮素吸收及其转运蛋白研究进展 [J]. 分子植物育种, 2015, 13(2):461−468.

    DUAN N, ZHANG Y X, LIU F, et al. Research progress on nitrogen uptake and transport protein in plant [J]. Molecular Plant Breeding, 2015, 13(2): 461−468.(in Chinese)
    [14] YUAN L X, GU R L, XUAN Y H, et al. Allosteric regulation of transport activity by heterotrimerization of Arabidopsis ammonium transporter complexes in vivo [J]. The Plant Cell, 2013, 25(3): 974−984. doi: 10.1105/tpc.112.108027
    [15] 李海霞, 邢亚娟, 李正华, 等. 不同氮素形态对蒙古栎幼苗生长及生理特性的影响 [J]. 森林工程, 2021, 37(2):35−40.

    LI H X, XING Y J, LI Z H, et al. Effects of different nitrate form on the growth and physiological characteristics for Quercus mongolica seedlings [J]. Forest Engineering, 2021, 37(2): 35−40.(in Chinese)
    [16] 潘霞. 蓝莓氮形态偏好性及其相关机理研究[D]. 金华: 浙江师范大学, 2019.

    PAN X. Study on nitrogen form preference of blueberry and its related mechanism[D]. Jinhua: Zhejiang Normal University, 2019. (in Chinese)
    [17] May Sandar Kyaing, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用 [J]. 生物技术进展, 2011, 1(3):159−164.

    KYAING M S, GU L J, CHENG H M. The role of nitrate reductase and nitrite reductase in plant [J]. Current Biotechnology, 2011, 1(3): 159−164.(in Chinese)
    [18] 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展 [J]. 中国农业科技导报, 2015, 17(2):109−117.

    XING Y, MA X H. Research progress on effect of nitrogen form on plant growth [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 109−117.(in Chinese)
    [19] IQBAL A, DONG Q, ALAMZEB M, et al. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency [J]. Journal of the Science of Food and Agriculture, 2020, 100(3): 904−914. doi: 10.1002/jsfa.10085
    [20] LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants [J]. The Plant Journal, 2014, 80(2): 230−241. doi: 10.1111/tpj.12626
    [21] 钟开新, 王亚琴. 植物氮素吸收与转运的研究进展 [J]. 广西植物, 2011, 31(3):414−417.

    ZHONG K X, WANG Y Q. Progress on nitrogen uptake and transport in plant [J]. Guihaia, 2011, 31(3): 414−417.(in Chinese)
    [22] OKAMOTO M, KUMAR A, LI W B, et al. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1 [J]. Plant Physiology, 2006, 140(3): 1036−1046. doi: 10.1104/pp.105.074385
    [23] ARAKI R, HASEGAWA H. Expression of rice (Oryza sativa L. ) genes involved in high-affinity nitrate transport during the period of nitrate induction [J]. Breeding Science, 2006, 56(3): 295−302. doi: 10.1270/jsbbs.56.295
    [24] LIN S H, KUO H F, CANIVENC G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport [J]. The Plant Cell, 2008, 20(9): 2514−2528. doi: 10.1105/tpc.108.060244
    [25] DE ANGELI A, MONACHELLO D, EPHRITIKHINE G, et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles [J]. Nature, 2006, 442(7105): 939−942. doi: 10.1038/nature05013
    [26] LIU X, LIU F, ZHANG L, et al. GsCLC-c2 from wild soybean confers chloride/salt tolerance to transgenic Arabidopsis and soybean composite plants by regulating anion homeostasis [J]. Physiologia Plantarum, 2021, 172(4): 1867−1879. doi: 10.1111/ppl.13396
    [27] 曾廷儒, 张静, 张登峰, 等. 玉米ZmCLCa基因克隆及其对氮素吸收的功能验证 [J]. 植物遗传资源学报, 2017, 18(1):112−116.

    ZENG T R, ZHANG J, ZHANG D F, et al. Cloning of ZmCLCa gene in maize and its functional characterization of nitrogen absorption [J]. Journal of Plant Genetic Resources, 2017, 18(1): 112−116.(in Chinese)
    [28] LÉRAN S, VARALA K, BOYER J C, et al. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants [J]. Trends in Plant Science, 2014, 19(1): 5−9. doi: 10.1016/j.tplants.2013.08.008
    [29] CUBERO-FONT P, MAIERHOFER T, JASLAN J, et al. Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation [J]. Current Biology, 2016, 26(16): 2213−2220. doi: 10.1016/j.cub.2016.06.045
    [30] BREUILLIN-SESSOMS F, FLOSS D S, GOMEZ S K, et al. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3 [J]. The Plant Cell, 2015, 27(4): 1352−1366. doi: 10.1105/tpc.114.131144
    [31] 杜旭华. 氮素形态对茶树生长及氮素吸收利用的影响[D]. 南京: 南京林业大学, 2009.

    DU X H. Research on the effect of nitrogen form on growth physiology and nitrogen absorption-utilization in four tea varieties (Camellia sinensis L. )[D]. Nanjing: Nanjing Forestry University, 2009. (in Chinese)
    [32] GLASS A D M, BRITTO D T, KAISER B N, et al. The regulation of nitrate and ammonium transport systems in plants [J]. Journal of Experimental Botany, 2002, 53(370): 855−864. doi: 10.1093/jexbot/53.370.855
    [33] 陈坤. 植物氮素高效吸收研究进展 [J]. 安徽农业科学, 2018, 46(26):31−33. doi: 10.3969/j.issn.0517-6611.2018.26.010

    CHEN K. Research advances on nitrogen uptake in plant [J]. Journal of Anhui Agricultural Sciences, 2018, 46(26): 31−33.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.26.010
    [34] MITANI-UENO N, YAMAJI N, MA J F. Transport System of Mineral Elements in Rice [J]. Rice Genomics, Genetics and Breeding, 2018(13): 223−240.
    [35] SONODA Y, IKEDA A, SAIKI S, et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice [J]. Plant and Cell Physiology, 2003, 44(12): 1396−1402. doi: 10.1093/pcp/pcg169
    [36] 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望 [J]. 生命科学, 2018, 30(10):1060−1071.

    JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants [J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1060−1071.(in Chinese)
    [37] 袁伟, 董元华, 王辉. 植物对氨基酸态氮吸收和利用的研究进展 [J]. 中国土壤与肥料, 2009(4):4−9. doi: 10.3969/j.issn.1673-6257.2009.04.002

    YUAN W, DONG Y H, WANG H. Uptake and utilization of amino acid nitrogen by plants [J]. Soil and Fertilizer Sciences in China, 2009(4): 4−9.(in Chinese) doi: 10.3969/j.issn.1673-6257.2009.04.002
    [38] CHRISPEELS M J, CRAWFORD N M, SCHROEDER J I. Proteins for transport of water and mineral nutrients across the membranes of plant cells [J]. The Plant Cell, 1999, 11(4): 661−675. doi: 10.1105/tpc.11.4.661
    [39] 田发祥, 纪雄辉, 官迪, 等. 氮肥增效剂的研究进展 [J]. 杂交水稻, 2020, 35(5):7−13.

    TIAN F X, JI X H, GUAN D, et al. Advances of research on nitrogen inhibitors [J]. Hybrid Rice, 2020, 35(5): 7−13.(in Chinese)
    [40] 王彦辉, 韩燕丽, 樊永强, 等. 叶面喷施尿素对谷子郑农谷09-6光合特性及产量的影响 [J]. 江苏农业科学, 2020, 48(5):92−96.

    WANG Y H, HAN Y L, FAN Y Q, et al. Effects of foliar spray of urea on photosynthetic characteristics and yield of millet cultivar Zhengnonggu 09-6 [J]. Jiangsu Agricultural Sciences, 2020, 48(5): 92−96.(in Chinese)
    [41] 栗方亮, 李忠佩, 刘明, 等. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响 [J]. 中国生态农业学报, 2012, 20(9):1113−1118.

    LI F L, LI Z P, LIU M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics [J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1113−1118.(in Chinese)
    [42] 曹小闯, 吴良欢, 马庆旭, 等. 高等植物对氨基酸态氮的吸收与利用研究进展 [J]. 应用生态学报, 2015, 26(3):919−929.

    CAO X C, WU L H, MA Q X, et al. Advances in studies of absorption and utilization of amino acids by plants: A review [J]. Chinese Journal of Applied Ecology, 2015, 26(3): 919−929.(in Chinese)
    [43] 张夫道, 孙羲. 氨基酸对水稻营养作用的研究 [J]. 中国农业科学, 1984, 17(5):61−66.

    ZHANG F D, SUN X. A study of nutrition of amino acids in rice seedlings [J]. Scientia Agricultura Sinica, 1984, 17(5): 61−66.(in Chinese)
    [44] RENTSCH D, SCHMIDT S, TEGEDER M. Transporters for uptake and allocation of organic nitrogen compounds in plants [J]. FEBS Letters, 2007, 581(12): 2281−2289. doi: 10.1016/j.febslet.2007.04.013
    [45] SU Y H, FROMMER W B, LUDEWIG U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis [J]. Plant Physiology, 2004, 136(2): 3104−3113. doi: 10.1104/pp.104.045278
    [46] HAMMES U Z, NIELSEN E, HONAAS L A, et al. AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis [J]. The Plant Journal, 2006, 48(3): 414−426. doi: 10.1111/j.1365-313X.2006.02880.x
    [47] ISHIYAMA K, INOUE E, WATANABE-TAKAHASHI A, et al. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis [J]. Journal of Biological Chemistry, 2004, 279(16): 16598−16605. doi: 10.1074/jbc.M313710200
    [48] KOJIMA S, KIMURA M, NOZAKI Y, et al. Analysis of a promoter for the NADH - glutamate synthase gene in rice (Oryza sativa): Cell type-specific expression in developing organs of transgenic rice plants [J]. Functional Plant Biology, 2000, 27(9): 787. doi: 10.1071/PP99145
    [49] PATTERSON K, CAKMAK T, COOPER A, et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants [J]. Plant, Cell & Environment, 2010, 33(9): 1486−1501.
    [50] LI Q, LI B H, KRONZUCKER H J, et al. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity [J]. Plant, Cell & Environment, 2010, 33(9): 1529−1542.
    [51] 赵凤艳, 魏自民, 陈翠玲. 氮肥用量对蔬菜产量和品质的影响 [J]. 农业系统科学与综合研究, 2001, 17(1):43−44. doi: 10.3969/j.issn.1001-0068.2001.01.013

    ZHAO F Y, WEI Z M, CHEN C L. The effect of N application rate on yield and quality of vegetable [J]. System Sciemces and Comprehensive Studies in Agriculture, 2001, 17(1): 43−44.(in Chinese) doi: 10.3969/j.issn.1001-0068.2001.01.013
    [52] FOX G G, RATCLIFFE R G, ROBINSON S A, et al. Evidence for deamination by glutamate dehydrogenase in higher plants: Commentary [J]. Canadian Journal of Botany, 1995, 73(7): 1112−1115. doi: 10.1139/b95-120
    [53] SKOPELITIS D S, PARANYCHIANAKIS N V, PASCHALIDIS K A, et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine [J]. The Plant Cell, 2006, 18(10): 2767−2781. doi: 10.1105/tpc.105.038323
    [54] O'BRIEN J A, VEGA A, BOUGUYON E, et al. Nitrate transport, sensing, and responses in plants [J]. Molecular Plant, 2016, 9(6): 837−856. doi: 10.1016/j.molp.2016.05.004
    [55] ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture [J]. Science, 1998, 279(5349): 407−409. doi: 10.1126/science.279.5349.407
    [56] REMANS T, NACRY P, PERVENT M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19206−19211. doi: 10.1073/pnas.0605275103
    [57] YU L H, MIAO Z Q, QI G F, et al. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals [J]. Molecular Plant, 2014, 7(11): 1653−1669. doi: 10.1093/mp/ssu088
    [58] RUBIN G, TOHGE T, MATSUDA F, et al. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis [J]. The Plant Cell, 2009, 21(11): 3567−3584. doi: 10.1105/tpc.109.067041
    [59] KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling [J]. Nature Communications, 2013, 4: 1617. doi: 10.1038/ncomms2621
    [60] MARCHIVE C, ROUDIER F, CASTAINGS L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants [J]. Nature Communications, 2013, 4: 1713. doi: 10.1038/ncomms2650
    [61] YU L H, WU J, TANG H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation [J]. Scientific Reports, 2016, 6: 27795. doi: 10.1038/srep27795
    [62] CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition [J]. Current Biology, 2016, 26(5): 640−646. doi: 10.1016/j.cub.2015.12.066
    [63] HU J, WANG Y X, FANG Y X, et al. A rare allele of GS2 enhances grain size and grain yield in rice [J]. Molecular Plant, 2015, 8(10): 1455−1465. doi: 10.1016/j.molp.2015.07.002
    [64] DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice [J]. Nature Plants, 2016, 2: 15203. doi: 10.1038/nplants.2015.203
    [65] KAWASHIMA T, SHIOI T. microRNA, emerging role as a biomarker of heart failure [J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2011, 75(2): 268−269. doi: 10.1253/circj.CJ-10-1254
    [66] VOINNET O. Origin, biogenesis, and activity of plant microRNAs [J]. Cell, 2009, 136(4): 669−687. doi: 10.1016/j.cell.2009.01.046
    [67] XU Z H, ZHONG S H, LI X H, et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots [J]. PLoS One, 2011, 6(11): e28009. doi: 10.1371/journal.pone.0028009
    [68] FUJII H, CHIOU T J, LIN S, et al. A miRNA involved in phosphate-starvation response in Arabidopsis [J]. Current Biology, 2005, 15(22): 2038−2043. doi: 10.1016/j.cub.2005.10.016
    [69] PANT B D, MUSIALAK-LANGE M, NUC P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing [J]. Plant Physiology, 2009, 150(3): 1541−1555. doi: 10.1104/pp.109.139139
    [70] ZHAO M, DING H, ZHU J K, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis [J]. New Phytologist, 2011, 190(4): 906−915. doi: 10.1111/j.1469-8137.2011.03647.x
    [71] YAN Y S, WANG H C, HAMERA S, et al. miR444a has multiple functions in the rice nitrate-signaling pathway [J]. The Plant Journal, 2014, 78(1): 44−55. doi: 10.1111/tpj.12446
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  1422
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 录用日期:  2022-03-17
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回