基于4-PHF(the four-parameter Hill function)法比较6种四照花种子的休眠特性
doi: 10.19303/j.issn.1008-0384.2022.004.008
4-PHF-based Analysis on Seed Dormancy of 6 Cornus Species
-
摘要:
目的 四照花属(Cornus)树种具有很高的园林观赏价值,有较高开发利用前景。本研究利用4-PHF(the four-parameter Hill function)法比较6种四照花种子的休眠特性,为四照花种质资源保存、种子贮藏及开发利用等提供理论依据。 方法 以6种四照花,包括大花四照花(CF)、中国四照花(CKC)、香港四照花(CH)、东京四照花(CHT)、秀丽四照花(CHE)和尖叶四照花(CE)种子为材料,用500 mg·L-1赤霉素(GA3)溶液浸泡3 d后进行低温层积处理,并设7个层积时间梯度(0、10、20、30、40、50、60 d);采用4-PHF法拟合6种四照花种子发芽曲线,计算发芽参数包括起始发芽时间(lag)和发芽高峰时间(TMGR)及休眠指数(DI)。 结果 层积有效地促进了四照花种子休眠的解除,但每个种达到最大发芽率所需层积时间存在差异:CKC仅需层积30 d发芽率可达78%,CH和CF层积60 d后发芽率分别达71%和89%,CHE、CHT和CE层积50 d后发芽率分别达63%、69%和54%。用4-PHF方程拟合的发芽曲线表明:随着休眠的解除,发芽参数lag和TMGR值持续下降,DI则呈现增加的趋势。 结论 结合各个发芽参数得出落叶类四照花CF、CKC种子休眠程度较浅,而常绿种CH、CHT、CHE和CE种子休眠较深,由DI值得出本试验处理未能充分解除常绿类四照花种子休眠,4- PHF方程进行种子萌发曲线拟合及萌发参数lag和TMGR可从生物学角度诠释层积处理对6种四照花种子的萌发差异,但DI值不宜用于比较种间休眠程度的差异。 -
关键词:
- 四照花属 /
- 起始发芽时间(lag) /
- 发芽高峰时间(TMGR) /
- 休眠指数(DI)
Abstract:Objectives Seed dormancy of 6 species of ornamental Cornus was studied using the 4-parameter hill function (4-PHF) method to aid the resource conservation, seed storage, plant development, and landscape planning. Method Seeds of C. florida (CF), C. kousa subsp. chinensis (CKC), C. hongkongensis (CH), C. hongdongensis subsp. tonkinensis (CHT), C. hongdongensis subsp. elegans (CHE), and C. elliptica (CE) were soaked in a 500 mg·L−1 GA3 solution for 3 d. Then, at durations of 0, 10, 20, 30, 40, 50, and 60 d, the seeds were stratified at low temperature. The 4-PHF method was used for curve-fitting to describe germinating patterns, as well as calculating estimates on the time at germination onset (lag), time at maximum germination rate (TMGR), and dormancy index (DI) for the 6 species. Result The stratification effectively facilitated the break of seed dormancy. However, the holding time required for maximal germination varied among the 6 species. For CKC, 78% germination was achieved in 30 d; for CH and CF, it was 71% and 89%, respectively, in 60 d; and for CHE, CHT, and CE, it was 63%, 69%, and 54%, respectively, in 50 d. The germination curves showed steady declines after break of dormancy on lag and TMGR but increase on DI. Conclusion As indicated by the germination parameters, it appeared that the evergreen variety of dogwoods went into a deeper dormancy than the deciduous ones. The DI showed the current treatment could not fully break the seed dormancy on the evergreen dogwoods. The germination curve-fitting and the 4-PHF-estimated lag and TMGR could explain the biological differences on the seed germination among the 6 dogwood species by the stratification treatments. On the other hand, DI could not be used to compare the degree of dormancy. -
Key words:
- Cornus /
- time at germination onset /
- time at maximum germination rate /
- dormancy index
-
图 1 层积时间对各种四照花种子绝对发芽率的影响
注:不同大写字母表示同种四照花种子经不同层积时间处理后的发芽率差异显著性(P<0.05);小写字母表示不同种四照花种子相同层积处理时间的种子发芽率差异显著性(P<0.05)。
Figure 1. Effect of stratification duration on absolute seed germination percentage of various dogwoods
Note: Data with different capital letters indicate significant difference on germination rate of same kind of dogwoods under varied stratification duration (P<0.05); those with different lowercase letters indicate significant difference on germination rate of different species of dogwoods under same stratification treatment (P<0.05).
图 4 6种四照花种子的休眠指数(DI)比较
注:y1(上曲线)分别为大花四照花和香港四照花层积60 d,秀丽四照花、东京四照花和尖叶四照花层积50 d,中国四照花层积30 d的萌发曲线;y2(下曲线)为未层积处理的萌发曲线。阴影面积代表其休眠指数DI。
Figure 4. DIs for seeds of 6 dogwood species
Note: DI: shaded area between Y1 (upper curves) of germination curves of CF stratified for 60 d, CH for 60 d, CHE for 50 d, CHT for 50 d, CE for 50 d, and CKC for 30 d and Y2 (lower curve) of those of the unstratified counterparts.
表 1 6种四照花种子采集信息
Table 1. Information on seed collection
树种名称
Specific
name代号
Code
name千粒重
Thousand seed
weight/g采种位置
Seed position经纬度
Longitude and
latitude海拔高度
Altitude/m中国四照花
C. kousa subsp. chinensisCKC 44.998 甘肃省天水市麦积区马跑泉镇崖湾村
Maiji District, Tianshui, Gansu ProvinceE 105°54′32",N 34°30′33" 1170 秀丽四照花
C. hongdongensis subsp. elegansCHE 61.000 浙江龙泉林科院
Longquan Forestry Research InstituteE 119°6′16",N 28°2′7" 424 东京四照花
C. hongdongensis subsp. tonkinensisCHT 83.045 南京市溧水区四照花园
Lishui District, Nanjing, Jiangsu ProvinceE 119°2′4",N 31°35′14" 81 香港四照花
C. hongkongensisCH 60.000 广东省韶关市乳源瑶族自治县洛阳镇
Ruyuan Yao Autonomous County,
Shaoguan, Guangdong ProvinceE 113°2′38",N 24°39′47" 700 尖叶四照花
C. ellipticaCE 70.000 广东省韶关市乐昌市廊田镇白山村
Lechang City, Shaoguan, Guangdong ProvinceE 113°28′8",N 25°7′29" 160 大花四照花
C. floridaCF 95.999 美国路易斯安那州
State of LouisianaW 90° 03′00″, N 29° 58′00″ 30 表 2 不同层积时间下6种四照花种子休眠解除的四参数希尔方程(4-PHF)的拟合参数
Table 2. 4-PHF fitting parameters for dormancy release of dog-wood seeds after stratification
代号
Code参数
Parameter层积时间
Stratification duration/d0 10 20 30 40 50 60 CF a 49.02 70.02 76.12 78.57 79.17 81.63 115.80 b 3.93 4.29 4.73 4.96 4.97 3.24 2.16 c 17.94 15.46 11.64 7.55 7.52 7.00 3.24 y0 0.53 −0.96 −1.15 −1.33 −1.33 0.66 −25.41 CKC a 19.07 52.54 66.54 76.97 46.17 54.59 45.52 b 5.52 6.20 4.93 6.40 2.73 1.87 3.50 c 13.83 11.36 10.44 12.21 11.13 11.17 6.38 y0 −0.46 −0.52 −0.82 0.96 −1.52 −3.90 3.34 CHE a − − − 6.48 1611.00 65.25 57.45 b − − − 5.92 2.92 2.97 2.09 c − − − 12.59 12.90 7.69 5.54 y0 − − − 1.22 2.29 −0.17 −1.54 CHT a 5.20 8.18 11.48 23.45 57.99 72.35 62.49 b 12.74 7.49 5.74 3.04 1.98 2.66 2.67 c 18.63 15.93 17.71 15.47 5.61 4.59 11.69 y0 −0.14 −0.03 −0.13 −0.70 −17.10 −2.67 2.34 CH a 11.59 31.31 44.43 55.79 65.51 73.93 75.96 b 6.71 4.78 4.08 3.42 2.82 2.11 2.94 c 19.05 22.65 19.55 22.18 15.49 12.28 13.32 y0 −0.38 −2.83 −1.06 0.06 −1.76 −2.28 0.89 CE a 14.08 25.53 40.82 41.19 50.22 56.65 53.16 b 7.70 3.25 2.28 2.16 2.22 1.84 1.77 c 17.75 15.01 11.40 11.20 8.48 4.41 5.92 y0 0.23 −2.13 −4.53 −2.88 −1.40 −2.21 0.20 表 3 不同层积时间下6种四照花种子的初始萌发时间(lag)的实际值与理论值
Table 3. Actual and theoretical lag of dogwood seeds after stratification
层积时间 Stratification duration/d CF CKC CHE CHT CH CE 0 */5 7.07/8 0 14.05/16 11.49/13 */11 10 5.71/7 5.41/7 0 7.54/10 13.97/15 7.17/9 20 4.82/6 4.30/6 0 8.15/10 7.88/9 4.57/6 30 3.33/5 */6 */6 4.94/7 */7 3.37/4 40 3.31/5 3.22/5 */4 5.54/5 4.34/5 1.71/3 50 */1 2.83/5 1.03/2 1.34/2 2.41/3 0.77/1 60 1.80/1 */2 1.00/2 1.29/2 */3 */1 注: “*”代表求解无实根,即萌发曲线与时间轴(x轴)无交点;“/”前面表示理论的初始萌发时间,后面表示实际的初始萌发时间。 Note: ″*″ represents solution without real roots, i.e., germination curve does not intersect time (x-axis). Data in front of ″/″ are theoretical initial germination duration, and those behind “/”, actual time. -
[1] 方文培. 四照花属的研究 [J]. 中国科学院大学学报, 1952, 2(2):89−114.FANG W P. Notes on Dendrobenthamia [J]. Journal of University of Chinese Academy of Sciences, 1952, 2(2): 89−114.(in Chinese) [2] LU Q, XU J, FU X X, et al. Physiological and growth responses of two dogwoods to short-term drought stress and re-watering [J]. Acta Ecologica Sinica, 2020, 40(2): 172−177. doi: 10.1016/j.chnaes.2019.05.001 [3] 方文培, 胡又光. 中国植物志(第56卷)[M]. 北京: 科学出版社, 1990: 86−88. [4] XIANG Q Y, Boufford D E. Flora of China(vol. 14)[M]. Beijing: Science Press, St. Louis: Missouri Botanical Garden Press, 2005: 206−221. [5] 洑香香, 徐杰, 刘国华. 观赏型四照花种质资源及其开发利用 [J]. 林业科技开发, 2015, 29(3):1−6.FU X X, XU J, LIU G H. The germplasm resources of ornamental Cornus and its development and utilization [J]. China Forestry Science and Technology, 2015, 29(3): 1−6.(in Chinese) [6] YUAN J Q, FANG Q, LIU G H, et al. Low divergence among natural populations of Cornus kousa subsp. chinensis revealed by ISSR markers [J]. Forests, 2019, 10(12): 1082. doi: 10.3390/f10121082 [7] 王昊伟, 杨玲, 鲁强, 等. 盐胁迫对大花四照花种子萌发与幼苗生长的影响 [J]. 南京林业大学学报(自然科学版), 2020, 44(3):89−94.WANG H W, YANG L, LU Q, et al. Effects of salt stress on seed germination and seedling growth of Cornus florida [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 89−94.(in Chinese) [8] 陈必芹, 方琴, 洑香香, 等. 基于ISSR标记的四照花栽培品种指纹图谱构建及亲缘关系分析 [J]. 分子植物育种, 2020, 18(3):952−961.CHEN B Q, FANG Q, FU X X, et al. Construction of fingerprinting and analysis of genetic relationship for cultivars of Cornus based on ISSR markers [J]. Molecular Plant Breeding, 2020, 18(3): 952−961.(in Chinese) [9] 鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应 [J]. 南京林业大学学报(自然科学版), 2020, 44(4):29−36.LU Q, YANG L, WANG H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. elegans [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 29−36.(in Chinese) [10] EL-KASSABY Y A. Representation of Douglas-fir and western hemlock families in seedling crops as affected by seed biology and nursery crop management practices [J]. Forest Genetics, 2000, 7: 305−315. [11] TIPTON J L. Evaluation of three growth curve models for germination data analysis [J]. Journal of The American Society For Horticultural Science, 1984, 109: 451−454. [12] BROWN R F, MAYER D G. Representing cumulative germination. 1. A critical analysis of single-value germination indices [J]. Annals of Botany, 1988, 61(2): 117−125. doi: 10.1093/oxfordjournals.aob.a087534 [13] BROWN R, MAYER D G. Representing cumulative germination. : 2. the use of the weibull function and other empirically derived curves [J]. Annals of Botany, 1988, 61(2): 127−138. doi: 10.1093/oxfordjournals.aob.a087535 [14] 易咏梅, 郑洪, 周建华. 四照花和狭叶四照花种子的萌发试验 [J]. 西部林业科学, 2004, 33(4):17−20. doi: 10.3969/j.issn.1672-8246.2004.04.004YI Y M, ZHENG H, ZHOU J H. Seed germination experiment of dendrobenthanmia Japonica [J]. Yunnan Forestry Science and Technology, 2004, 33(4): 17−20.(in Chinese) doi: 10.3969/j.issn.1672-8246.2004.04.004 [15] BASKIN J M, BASKIN C C. A classification system for seed dormancy [J]. Seed Science Research, 2004, 14(1): 1−16. doi: 10.1079/SSR2003150 [16] FU X X, LIU H N, ZHOU X D, et al. Seed dormancy mechanism and dormancy breaking techniques for Cornus kousa var. chinensis [J]. Seed Science and Technology, 2013, 41(3): 458−463. doi: 10.15258/sst.2013.41.3.12 [17] 刘红娜. 日本四照花种子休眠与萌发的机理研究[D]. 南京: 南京林业大学, 2012.LIU H N. Studies on mechanism of dormancy and germination of Cornus japonica seed[D]. Nanjing: Nanjing Forestry University, 2012. (in Chinese) [18] 肖丹琪, 路承香. 四照花属植物种质资源分布及其研究进展 [J]. 甘肃林业科技, 2008, 33(1):24−26,68. doi: 10.3969/j.issn.1006-0960.2008.01.007XIAO D Q, LU C X. Germplasm resource distribution and recent research advance in dendrobenthamia [J]. Journal of Gansu Forestry Science and Technology, 2008, 33(1): 24−26,68.(in Chinese) doi: 10.3969/j.issn.1006-0960.2008.01.007 [19] EL-KASSABY Y A, MOSS I, KOLOTELO D, et al. Seed germination: Mathematical representation and parameters extraction [J]. Forest Science, 2008, 54(2): 220−227. [20] RICHTER D D, SWITZER G L. A technique for determining quantitative expressions of dormancy in seeds [J]. Annals of Botany, 1982, 50(4): 459−463. doi: 10.1093/oxfordjournals.aob.a086385 [21] 国家质量技术监督局. 林木种子检验规程: GB 2772—1999[S]. 北京: 中国标准出版社, 2000. [22] FU X X, LIU H N, XU J, et al. Primary metabolite mobilization and hormonal regulation during seed dormancy release in Cornus japonica var. chinensis [J]. Scandinavian Journal of Forest Research, 2014, 29(6): 542−551. doi: 10.1080/02827581.2014.922608 [23] 张莉梅, 张子晗, 刘源, 等. 低温层积过程中圆齿野鸦椿种子的生理生化变化 [J]. 种子, 2015, 34(7):37−40.ZHANG L M, ZHANG Z H, LIU Y, et al. The biochemical and physiological changes of Euscaphis konishii Hayata seeds during the period of stratification [J]. Seed, 2015, 34(7): 37−40.(in Chinese) [24] 张莉梅, 张子晗, 喻方圆. 低温层积过程中野鸦椿种子生理生化变化的研究 [J]. 中南林业科技大学学报, 2016, 36(11):36−40.ZHANG L M, ZHANG Z H, YU F Y. Biochemical and physiological changes of Euscaphis japonica seeds during the period of stratification [J]. Journal of Central South University of Forestry & Technology, 2016, 36(11): 36−40.(in Chinese) [25] 杨期和, 叶万辉, 宋松泉, 等. 植物种子休眠的原因及休眠的多形性 [J]. 西北植物学报, 2003, 23(5):837−843. doi: 10.3321/j.issn:1000-4025.2003.05.026YANG Q H, YE W H, SONG S Q, et al. Summarization on causes of seed dormancy and dormancy polymorphism [J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(5): 837−843.(in Chinese) doi: 10.3321/j.issn:1000-4025.2003.05.026 [26] 徐慧敏, 郭磊, 马瑞娟, 等. 低温冷藏对桃砧木Nemaguard种子萌发及幼苗生长的影响 [J]. 江苏农业学报, 2022, 38(1):200−206. doi: 10.3969/j.issn.1000-4440.2022.01.024XU H M, GUO L, MA R J, et al. Effects of cold storage on seed germination and seedling growth of peach rootstock cultivar Nemaguard [J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 200−206.(in Chinese) doi: 10.3969/j.issn.1000-4440.2022.01.024 [27] 杨国慧, 范珍珠, 李玲, 等. 树莓种子休眠原因探究 [J]. 东北农业大学学报, 2020, 51(11):32−39. doi: 10.3969/j.issn.1005-9369.2020.11.004YANG G H, FAN Z Z, LI L, et al. Research on dormancy of raspberry seeds [J]. Journal of Northeast Agricultural University, 2020, 51(11): 32−39.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.11.004 [28] 郭连金, 肖志鹏, 殷崇敏, 等. 濒危植物香果树种子萌发特性研究 [J]. 生态科学, 2021, 40(4):13−18.GUO L J, XIAO Z P, YIN C M, et al. The research on characteristics of seed germination of endangered plant Emmenopterys henryi [J]. Ecological Science, 2021, 40(4): 13−18.(in Chinese) [29] FIGUEROA R, HERMS D A, CARDINA J, et al. Maternal environment effects on common groundsel (Senecio vulgaris) seed dormancy [J]. Weed Science, 2010, 58(2): 160−166. doi: 10.1614/WS-D-09-00006.1 [30] ZHOU Z Q, BAO W K. Changes in seed dormancy of Rosa multibracteata Hemsl. & E. H. Wilson with increasing elevation in an arid valley in the eastern Tibetan Plateau [J]. Ecological Research, 2014, 29(4): 693−700. doi: 10.1007/s11284-014-1155-0 [31] KOLOTELO D, VAN STEENIS E, PETERSON M, et al. Seed handling guidebook[M]. Victoria: BC Ministry of Forests, Tree Improvement Branch, 2001: 8−16. [32] STOEHR M U, L'HIRONDELLE S J, BINDER W D, et al. Parental environment aftereffects on germination, growth, and adaptive traits in selected white spruce families [J]. Canadian Journal of Forest Research, 1998, 28(3): 418−426. doi: 10.1139/x98-012