Effects of Dietary Rutin on Rumen Microbial Community Diversity and Composition of Hu Sheep
-
摘要:
目的 研究日粮中添加芦丁对湖羊瘤胃细菌菌群多样性及组成的影响。 方法 选择3月龄左右、健康且体重相近的湖羊36只,随机分为3个处理,每个处理12只(公母各半,分栏饲养)。对照组(CON组)饲喂基础日粮,试验组R50和R100分别在基础日粮中添加50、100 mg·kg−1(湖羊体重基础)的芦丁。试验期为70 d,预试期14 d,正试期56 d。 结果 1)3组共产生446个OTUs(Operational taxonomic units),其中共有OTU为396个,占总OTU的88.79%,所有样品共注释了14个门(Phylum)、18个纲(Class)、21个目(Order)、34个科(Family)和99个属(Genus)。2)相对于CON组,R100组的ACE指数、Shannon指数、Chao1指数显著降低(P<0.05)。但CON和R50组中Alpha多样性均无显著差异(P>0.05)。3)通过PCoA分析(Principal co-ordinates analysis)、NMDS分析(Non-metric multi-dimensional scaling analysis)、UPGMA聚类方法(Unweighted pair group method with arithmetic mean clustering analysis)和Anosim分析可知,R100组显著影响微生物群落结构。4)在门水平,拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)为两大优势菌门。相比CON组,R100组髌骨细菌门(Patescibacteria)的相对丰度显著提高,迷踪菌门(Elusimicrobia)的相对丰度显著降低(P<0.05),但R50组Elusimicrobia的相对丰度显著高于CON组和R100组(P<0.05)。5)在属水平,优势菌属均为普雷沃菌属_1(Prevotella_1)。在已鉴定丰度排名前30的属水平上,R100组新月形单胞菌属_1(Selenomonas_1)和琥珀酸菌属(Succiniclasticum)的相对丰度显著低于CON组(P<0.05),但与R50组差异不显著(P>0.05)。 结论 添加100 mg·kg−1的芦丁能够影响湖羊瘤胃微生物多样性。 Abstract:Objective Effects of rutin supplementation in forage on the rumen microbial community diversity and composition of Hu sheep were studied. Method Thirty-six healthy 3-month-old Hu sheep of similar body weight were randomly divided into 3 groups of 12 animals (half male and female) each for the treatments. The sheep in the control group (CON) were fed a basal diet, while those in two treatment groups on a daily diet supplemented with rutin at a rate of 50 mg (R50) or 100 mg (R100) per kg of animal body weight. The feeding test lasted for 70 d that included 14 d of pre-test and 56 d of actual test. Result (1) Of the 446 OTUs collected in the sheep rumens, 396 (constituted 88.79% of total) were commonly shared by the sheep in the 3 groups that annotated into 14 phyla, 18 classes, 21 orders, 34 families, and 99 genera. (2) The ACE, Shannon, and Chao1 indices of the sheep in the R100 group were significantly lower than those of CON (P <0.05), while the alpha diversity not significantly different between CON and R50 groups (P>0.05). (3) The results of the principal co-ordinates analysis (PCoA), the non-metric multi-dimensional scaling analysis (NMDS), the unweighted pair group method with arithmetic mean clustering analysis (UPGMA), and the anosim analysis showed that the microbial community was significantly altered by the R100 treatment (P<0.05). (4) Bacteroidetes and Firmicutes were two dominant phyla. R100 significantly increased the relative abundance of Patescibacteria but decreased that of Elusimicrobia (P <0.05). On the other hand, R50 significantly raised the relative abundance of Elusimicrobia over CON or R100 (P<0.05). (5) At genus level, the dominant microbes were Prevotella_1 . The relative abundance of Selenomonas_1 and Succiniclasticum in the sheep fed with R100 were significantly lower than CON (P<0.05) but not significantly different from R50 (P>0.05). Conclusion Addition of rutin to forage at a rate of 100 mg·kg−1 of sheep body weight significantly affected the rumen microbial diversity in Hu sheep . -
Key words:
- Hu sheep /
- rutin /
- rumen /
- microorganism
-
表 1 瘤胃液细菌群Alpha多样性分析
Table 1. Alpha diversity analysis on microbial community in rumen fluid
项目
ItemsCON组
CON GroupR50组
R50 groupR100组
R100 groupACE 指数
ACE index405.40±7.47 a 395.08±3.34 a 372.51±9.07 b 赵氏指数
Chao1 index409.07±7.63 a 398.95±4.10 ab 377.80±12.46 b 香农指数
Shannon index6.52±0.17 a 6.69±0.14 a 5.92±0.23 b 辛普森指数
Simpson index0.97±0.01 ab 0.98±0.00 a 0.95±0.01 b 注:同行数据后的大写字母不同表示差异极显著(P<0.01),小写字母不同表示差异显著(P<0.05),相同或无字母表示差异不显著(P>0.05)。下表同。
Note:Different uppercase letters on the same line indicate extremely significant differences (P<0.01), lowercase letters indicate significant differences
(P<0.05), while the same or no letters mean no significant difference (P>0.05). The same as below.表 2 芦丁对湖羊瘤胃微生物相对丰度的影响(门水平)
Table 2. Effect of rutin on microbial relative abundance in rumen of Hu sheep (at phylum level) (单位:%)
项目
ItemsCON组
CON groupR50组
R50 groupR100组
R100 group拟杆菌门 Bacteroidetes 52.84±3.03 59.18±3.02 62.76±6.39 厚壁菌门 Firmicutes 35.47±1.87 31.56±1.39 29.67±5.23 变形菌门 Proteobacteria 5.80±2.10 1.97±1.22 1.67±0.75 互养菌门 Synergistetes 1.68±0.97 2.70±1.53 0.77±0.53 广古菌门 Euryarchaeota 1.43±1.15 0.67±0.13 2.12±1.52 螺旋体门 Spirochaetes 0.54±0.21 1.65±0.70 1.08±0.41 放线菌门 Actinobacteria 1.33±1.32 0.61±0.29 0.85±0.42 纤维杆菌门 Fibrobacteres 0.36±0.09 0.31±0.06 0.37±0.14 髌骨细菌门 Patescibacteria 0.17±0.06 b 0.30±0.06 ab 0.56±0.18 a 迷踪菌门 Elusimicrobia 0.06±0.04 b 0.80±0.40 a 0.00±0.00 c 软壁菌门 Tenericutes 0.27±0.14 0.22±0.11 0.07±0.03 Kiritimatiellaeota 0.05±0.01 0.03±0.01 0.03±0.01 蓝藻菌门 Cyanobacteria 0.00±0.00 0.01±0.00 0.05±0.04 k__Bacteria_Unclassified 0.02±0.02 0.01±0.01 0.02±0.02 表 3 芦丁对湖羊瘤胃微生物相对丰度的影响(属水平)
Table 3. Effect of rutin on microbial relative abundance in rumen of Hu sheep (at genus level)
(单位:%) 项目
ItemsCON组
CON groupR50组
R50 groupR100组
R100 group普雷沃菌属_1 Prevotella_1 20.28±5.92 26.34±3.35 26.79±7.98 理研菌科_RC9_gut_group
Rikenellaceae_RC9_gut_group12.16±2.99 11.05±2.13 18.60±4.48 f__F082_Unclassified 3.47±0.41 5.83±1.64 5.09±1.07 f__Muribaculaceae_Unclassified 4.83±1.60 5.55±1.93 1.98±1.35 新月形单胞菌属 Selenomonas_1 5.10±1.40 a 2.56±0.40 ab 1.51±0.52 b f__Prevotellaceae_Unclassified 2.67±0.53 2.61±0.52 3.65±1.55 瘤胃球菌属_2 Ruminococcus_2 0.80±0.19 2.11±1.31 5.11±3.26 f__Veillonellaceae_Unclassified 2.53±0.81 3.14±0.98 2.10±0.77 Ruminococcaceae_NK4A214_group 2.73±0.73 2.14±0.42 2.26±0.63 Christensenellaceae_R-7_group 1.95±0.11 1.66±0.31 2.89±1.99 Quinella 1.86±0.78 2.17±0.86 2.46±1.05 [Eubacterium]_coprostanoligenes_group 3.99±3.71 0.56±0.16 1.94±1.02 琥珀酸弧菌属 Succinivibrio 3.46±1.52 0.81±0.52 1.21±1.02 f__Bacteroidales_RF16_group_Unclassified 3.11±0.87 a 0.89±0.27 b 1.32±0.29 b Prevotellaceae_UCG-003 2.29±0.97 1.48±0.39 1.45±0.21 Fretibacterium 1.54±0.97 2.55±1.52 0.72±0.52 Prevotellaceae_UCG-001 1.30±0.43 1.91±0.79 1.49±0.46 Lachnospiraceae_ND3007_group 0.94±0.54 1.37±0.49 2.15±0.95 甲烷短杆菌属
Methanobrevibacter1.38±1.16 0.61±0.13 2.11±1.52 f__Lachnospiraceae_Unclassified 1.21±0.15 AB 1.87±0.42 A 0.52±0.14 B 瘤胃球菌属_1 Ruminococcus_1 1.15±0.37 1.41±0.28 0.78±0.14 密螺旋体属_2 Treponema_2 0.53±0.21 1.65±0.70 1.08±0.41 Veillonellaceae_UCG-001 1.43±0.52 1.04±0.24 0.49±0.15 f__Bifidobacteriaceae_Unclassified 1.32±1.32 0.61±0.30 0.85±0.42 琥珀酸菌属 Succiniclasticum 1.67±0.61 a 0.73±0.25 ab 0.26±0.12 b f__Bacteroidales_BS11_gut_group_Unclassified 0.50±0.21 1.00±0.39 0.78±0.54 Succinivibrionaceae_UCG-002 1.58±0.71 0.61±0.52 0.00±0.00 厌氧弧菌属 Anaerovibrio 0.98±0.27 0.73±0.23 0.48±0.28 Ruminococcaceae_UCG-002 0.42±0.19 0.66±0.13 0.65±0.17 Lachnospiraceae_NK3A20_group 0.58±0.18 0.61±0.06 0.55±0.09 -
[1] MORGAVI D P, RATHAHAO-PARIS E, POPOVA M, et al. Rumen microbial communities influence metabolic phenotypes in lambs [J]. Frontiers in Microbiology, 2015, 6: 1060. [2] YU J K, CAI L Y, ZHANG J C, et al. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro [J]. Microorganisms, 2020, 8(8): 1160. doi: 10.3390/microorganisms8081160 [3] 白齐昌, 郝小燕, 项斌伟, 等. 沙棘黄酮对绵羊体外产气量、瘤胃发酵参数和微生物菌群的影响 [J]. 动物营养学报, 2020, 32(3):1405−1414.BAI Q C, HAO X Y, XIANG B W, et al. Effects of sea buckthorn flavone on gas production, rumen fermentation parameters and microflora population of sheep in vitro [J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1405−1414.(in Chinese) [4] 王霞, 刘莹莹, 曾青华, 等. 桑叶黄酮对动物氧化应激的作用 [J]. 中兽医医药杂志, 2020, 39(1):98−101.WANG X, LIU Y Y, ZENG Q H, et al. Reviewed on flavonoids in Folium Mori on animal oxidative stress [J]. Journal of Traditional Chinese Veterinary Medicine, 2020, 39(1): 98−101.(in Chinese) [5] HEIM K E, TAGLIAFERRO A R, BOBILYA D J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships [J]. The Journal of Nutritional Biochemistry, 2002, 13(10): 572−584. doi: 10.1016/S0955-2863(02)00208-5 [6] GANESHPURKAR A, SALUJA A K. The pharmacological potential of rutin [J]. Saudi Pharmaceutical Journal, 2017, 25(2): 149−164. doi: 10.1016/j.jsps.2016.04.025 [7] CUSHNIE T P T, LAMB A J. Antimicrobial activity of flavonoids [J]. International Journal of Antimicrobial Agents, 2005, 26(5): 343−356. doi: 10.1016/j.ijantimicag.2005.09.002 [8] OSKOUEIAN E, ABDULLAH N, OSKOUEIAN A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population [J]. BioMed Research International, 2013: 349129. [9] BODAS R, PRIETO N, GARCÍA-GONZÁLEZ R, et al. Manipulation of rumen fermentation and methane production with plant secondary metabolites [J]. Animal Feed Science and Technology, 2012, 176(1/2/3/4): 78−93. [10] CUI K, GUO X D, TU Y, et al. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows [J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(6): 1065−1073. doi: 10.1111/jpn.12334 [11] 占今舜, 钟小军, 杨群, 等. 芦丁的生物活性功能及其在反刍动物生产中的应用 [J]. 动物营养学报, 2019, 31(7):2952−2957. doi: 10.3969/j.issn.1006-267x.2019.07.002ZHAN J S, ZHONG X J, YANG Q, et al. Bio-active functions of rutin and its application in ruminant production [J]. Chinese Journal of Animal Nutrition, 2019, 31(7): 2952−2957.(in Chinese) doi: 10.3969/j.issn.1006-267x.2019.07.002 [12] GHORBANI A. Mechanisms of antidiabetic effects of flavonoid rutin [J]. Biomedicine & Pharmacotherapy, 2017, 96: 305−312. [13] 郭旭东. 芦丁对奶牛泌乳性能、瘤胃消化代谢和对大鼠乳腺发育的影响[D]. 北京: 中国农业科学院, 2011.GUO X D. Studies of rutin's role on lactation performance, the rumen digestion and metabolism in dairy cows, and the development of mammary glands in rats[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) [14] 占今舜, 霍俊宏, 钟小军, 等. 饲粮中添加芦丁对湖羊生长性能、血清生化指标和激素水平及瘤胃发酵的影响 [J]. 动物营养学报, 2021, 33(5):2717−2726.ZHAN J S, HUO J H, ZHONG X J, et al. Effects of diet added with rutin on growth performance, serum biochemical indexes and hormone levels, and rumen fermentation of Hu sheep [J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2717−2726.(in Chinese) [15] LV F, WANG X J, PANG X, et al. Effects of supplementary feeding on the rumen morphology and bacterial diversity in lambs [J]. PeerJ, 2020, 8: e9353. doi: 10.7717/peerj.9353 [16] MA Y B, WANG W W, ZHANG H J, et al. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens [J]. Scientific Reports, 2018, 8: 15358. doi: 10.1038/s41598-018-33762-8 [17] WANG W M, LI C, LI F, et al. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs [J]. Scientific Reports, 2016, 6: 32479. doi: 10.1038/srep32479 [18] AUFFRET M D, DEWHURST R J, DUTHIE C A, et al. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle [J]. Microbiome, 2017, 5(1): 159. doi: 10.1186/s40168-017-0378-z [19] REQUENA T, COTTER P, SHAHAR D R, et al. Interactions between gut microbiota, food and the obese host [J]. Trends in Food Science & Technology, 2013, 34(1): 44−53. [20] XUE D, CHEN H, LUO X L, et al. Microbial diversity in the rumen, reticulum, omasum, and abomasum of yak on a rapid fattening regime in an agro-pastoral transition zone [J]. Journal of Microbiology (Seoul, Korea), 2018, 56(10): 734−743. [21] SINGH K M, AHIR V B, TRIPATHI A K, et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study [J]. Molecular Biology Reports, 2012, 39(4): 4841−4848. doi: 10.1007/s11033-011-1278-0 [22] ZENG Y, ZENG D, NI X Q, et al. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity [J]. AMB Express, 2017, 7(1): 75. doi: 10.1186/s13568-017-0378-1 [23] 孙美杰, 姜君, 徐诣轩, 等. 不同尿素添加水平对育肥湖羊瘤胃发酵及微生物菌群结构的影响 [J]. 南京农业大学学报, 2022, 45(2):323−332.SUN M J, JIANG J, XU Y X, et al. Effects of incremental urea supplementation in diet on rumen fermentation and microbial communities in fattening Hu lambs [J]. Journal of Nanjing Agricultural University, 2022, 45(2): 323−332.(in Chinese) [24] MICHAUD L, LO GIUDICE A, TROUSSELLIER M, et al. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system [J]. Journal of Applied Microbiology, 2009, 107(6): 1935−1946. doi: 10.1111/j.1365-2672.2009.04378.x [25] STEVENSON D M, WEIMER P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR [J]. Applied Microbiology and Biotechnology, 2007, 75(1): 165−174. doi: 10.1007/s00253-006-0802-y [26] SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in Biotechnology, 2015, 33(9): 496−503. doi: 10.1016/j.tibtech.2015.06.011 [27] 曲湘勇, 陈继发, 匡佑华, 等. 饲粮添加蒙脱石和枯草芽孢杆菌对产蛋鸡盲肠菌群和肠道通透性的影响 [J]. 动物营养学报, 2019, 31(4):1887−1896.QU X Y, CHEN J F, KUANG Y H, et al. Effects of dietary montmorillonite and Bacillus subtilis on cecal microflora and intestinal permeability of laying hens [J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1887−1896.(in Chinese) [28] PITTA D W, PINCHAK E, DOWD S E, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets [J]. Microbial Ecology, 2010, 59(3): 511−522. doi: 10.1007/s00248-009-9609-6 [29] HENDERSON G, YILMAZ P, KUMAR S, et al. Improved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic framework [J]. PeerJ, 2019, 7: e6496. doi: 10.7717/peerj.6496 [30] STROBEL H J. Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23 [J]. Applied and Environmental Microbiology, 1992, 58(7): 2331−2333. doi: 10.1128/aem.58.7.2331-2333.1992 [31] MCCANN J C, LUAN S Y, CARDOSO F C, et al. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium [J]. Frontiers in Microbiology, 2016, 7: 701. [32] MOUFIDA A, AMINA B, RABAH A, et al. Effect of natural bioflavonoid on in vitro ruminal microbiota activity in sheep rumen liquor [J]. Journal of BioScience and Biotechnology, 2017, 6(1): 31−35.