Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium
-
摘要:
目的 筛选鼠伤寒沙门菌sRNA SdsR的靶基因,为明确sRNA与靶基因的互作以及沙门菌的致病机制奠定基础。 方法 利用TargetRNA2软件预测sRNA SdsR的靶标,基于前期的sRNA SdsR敲除后转录组测序结果,将预测到的基因注释到GO、KEGG以及eggNOG数据库中进行分析,通过RT-qPCR对预测到的杂交能量较高的部分靶基因进行验证。 结果 TargetRNA2软件预测到29个靶标,其中hemA、STM0951、mreC、STM1252、dcoC的杂交能量较高,且能与sRNA SdsR有连续的碱基匹配,分别与鼠伤寒沙门菌血红素合成、氧化还原过程、草酰乙酸脱羧酶的合成、膜的组成部分、细胞质蛋白的合成有关。RT-qPCR结果显示,相对于野生菌株3409,敲除sRNA SdsR后hemA、mreC的表达分别下调0.70和0.39倍;STM0951、STM1252、dcoC的表达分别上调0.51、0.35和1.86倍。 结论 hemA、 STM0951 、mreC、STM1252 、dcoC基因很可能受sRNA SdsR的直接调控且对某些靶基因的表达有促进作用。 -
关键词:
- 鼠伤寒沙门菌 /
- sRNA SdsR /
- TargetRNA2 /
- 靶基因 /
- 转录组测序
Abstract:Objective Target genes of Salmonella Typhimurium sRNA SdsR were investigated to further understand the interactions between the sRNA and the target genes as well as the pathogenic mechanism of S. typhimurium. Method The TargetRNA2 software was used to predict the target of sRNA SdsR in the pathogen. According to the results obtained in a previous sRNA SdsR knock-out transcriptome sequencing study, the predicted genes were annotated into GO, KEGG, and eggNOG databases for analysis. Those with high hybridization energy were further verified by RT-qPCR. Result There were 29 targets predicted by TargetRNA2. Among them, hemA, STM0951, mreC, STM1252, and dcoC showed high hybridization energy with a possibility of having a continuous base to match the sRNA SdsR. They might be associated with the heme synthesis, redox process, oxaloacetate decarboxylase synthesis, and membrane components and cytoplasmic protein synthesis in S. typhimurium. The RT-qPCR showed, after sRNA SdsR knockout, hemA to be downregulated by 0.70 times and mreC 0.39 times, while STM0951, STM1252, and dcoC upregulated by 0.51, 0.35 and 1.86 times, respectively, over the wild strain 3409. Conclusion It appeared that the genes identified in this study, including hemA, STM0951, mreC, STM1252 and dcoC, could directly be regulated by the sRNA SdsR and might affect the expressions of some target genes. -
Key words:
- Salmonella Typhimurium /
- sRNA SdsR /
- TargetRNA2 /
- target gene /
- transcriptome sequencing
-
表 1 引物序列
Table 1. Primer sequence
引物名称
Primer name序列(5′-3′)
Sequence (5′-3′)预扩增片段长度
Pre-amplified
fragment
length/bphemA-F ACGAATCTGCTCCGACTGAC 200 hemA-R GCAAACTGGCGAACGCTTAT STM0951-F ACATTGAGCGGCGAGAAAGT 116 STM0951-R ACCCACGATGTTATCCCGAC mreC-F ACAACAGCAGCAGATAGCGT 173 mreC-R CGATATTCGCGTTGGCGATG STM1252-F ATGGCGAATCATGGCTACCG 85 STM1252-R ATGCCGCCCTCGCTAATAAT dcoC-F CGGTGCTATTAGGTGAAGGCT 87 dcoC-R GGATGGCGAAAATCAGCAGG GAPDH-F CCCAGATGGGATTAGCTAGTTG 133 GAPDH-R ATTCCCCACTGCTGCCTCCCGT 表 2 TargetRNA2软件预测结果
Table 2. Prediction by TargetRNA2
排名
Rank基因ID
Gene ID符号
Symbol能量
EnergyP值
P value1 STM1777 hemA −16.51 0.000 2 STM0951 — −15.39 0.000 3 STM3373 mreC −14.91 0.001 4 STM1252 — −12.84 0.004 5 STM0766 dcoC −11.91 0.008 6 STM3127 — −11.74 0.009 7 STM4500 yjhP −11.69 0.009 8 STM0715 — −11.03 0.013 9 STM1088 pipB −10.89 0.015 10 STM4583 trpR −10.75 0.016 11 STM4599 yjjY −10.68 0.016 12 STM1625 ydcI −10.52 0.018 13 STM0691 — −10.52 0.018 14 STM3543 gntR −10.2 0.021 15 STM0317 gpt −10.2 0.021 16 STM3533 — −10.1 0.022 17 STM0246 metI −10.08 0.022 18 STM1445 slyB −9.89 0.025 19 STM0720 — −9.7 0.027 20 STM4520 — −9.67 0.027 21 STM3888 yieP −9.66 0.027 22 STM2193 folE −9.22 0.034 23 STM1440 sodC −9.2 0.034 24 STM4089 menG −9.14 0.035 25 STM0529 fdrA −8.69 0.042 26 STM3203 ygiM −8.66 0.043 27 STM3803 yidF −8.54 0.045 28 STM3563 livH −8.52 0.046 29 STM0051 rihC −8.43 0.047 表 3 靶位点预测结果
Table 3. Predicted target sites
mRNA 功能
Function靶位点预测
Target site predictionhemA 谷氨酰-tRNA还原酶
Glutamyl-tRNA reductaseSdsR 59 hemA 20 STM0951 细胞质蛋白
Cytoplasmic proteinSdsR 61 STM0951 −65 mreC 棒状决定蛋白质
MreC Rod shape-determining protein MreCSdsR 63 mreC 20 STM1252 细胞质蛋白
Cytoplasmic proteinSdsR 58 STM1252 19 dcoC 草酰乙酸脱羧酶γ亚基
Oxaloacetate decarboxylase subunit gammaSdsR 75 dcoC −45 表 4 预测靶基因GO、KEGG和eggNOG数据库注释结果
Table 4. Annotation of predicted target genes by GO, KEGG, and eggNOG databases
基因ID
Gene ID长度
Length/bplog2变化倍数
log2FC符号
SymbolGO富集分析
GOKEGG富集
分析
KEGG直系同源蛋白
分组比对
eggNOGeggNOG 蛋白
功能分类
eggNOG ClassSTM1777 1276 —0.236124007 hemA 生物过程(原卟啉原IX生物合成过程、氧化还原过程);细胞成分(−);分子功能(槲皮素2,3-双加氧酶活性); 卟啉与
叶绿素代谢proNOG01837 H:辅酶转运与代谢 STM0951 868 0.509384983 STM0951 生物过程(氧化还原过程);细胞成分(−);分子功能(槲皮素2,3-双加氧酶活性); — proNOG03931 R:仅适用于一般功能预测 STM3373 1069 —0.391500147 merC 生物过程(细胞形状的调节);
细胞成分(膜的组成部分;质膜);分子功能(−);— COG1792; proNOG06657 M:细胞壁/
膜/包膜生物发生STM1252 1049 0.346239576 STM1252 生物过程(−);细胞成分(−);分子功能(−); — proNOG13117 G:碳水化合物运输和代谢 STM0766 245 1.855584795 dcoC 生物过程(脂质代谢过程);细胞成分(质膜;膜的组成部分);分子功能(钠离子跨膜转运蛋白活性、草酰乙酸脱羧酶活性、水解酶活性); 丙酮酸代谢 proNOG71341 C:能源生产和转换 -
[1] FRÖHLICH K S, PAPENFORT K. Regulation outside the box: New mechanisms for small RNAs [J]. Molecular Microbiology, 2020, 114(3): 363−366. doi: 10.1111/mmi.14523 [2] RYAN D, MUKHERJEE M, SUAR M. The expanding targetome of small RNAs in Salmonella Typhimurium [J]. Biochimie, 2017, 137: 69−77. doi: 10.1016/j.biochi.2017.03.005 [3] WATERS L S, STORZ G. Regulatory RNAs in bacteria [J]. Cell, 2009, 136(4): 615−628. doi: 10.1016/j.cell.2009.01.043 [4] MELAMED S, PEER A, FAIGENBAUM-ROMM R, et al. Global mapping of small RNA-target interactions in bacteria [J]. Molecular Cell, 2016, 63(5): 884−897. doi: 10.1016/j.molcel.2016.07.026 [5] BOUVIER M, SHARMA C M, MIKA F, et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation [J]. Molecular Cell, 2008, 32(6): 827−837. doi: 10.1016/j.molcel.2008.10.027 [6] FRÖHLICH K S, PAPENFORT K, BERGER A A, et al. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD [J]. Nucleic Acids Research, 2011, 40(8): 3623−3640. [7] FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella [J]. Nucleic Acids Research, 2016, 44(21): 10406−10422. [8] TJADEN B, GOODWIN S S, OPDYKE J A, et al. Target prediction for small, noncoding RNAs in bacteria [J]. Nucleic Acids Research, 2006, 34(9): 2791−2802. doi: 10.1093/nar/gkl356 [9] BUSCH A, RICHTER A S, BACKOFEN R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions [J]. Bioinformatics, 2008, 24(24): 2849−2856. doi: 10.1093/bioinformatics/btn544 [10] EGGENHOFER F, TAFER H, STADLER P F, et al. RNApredator: fast accessibility-based prediction of sRNA targets [J]. Nucleic Acids Research, 2011, 39(S2): W149−W154. [11] KERY M B, FELDMAN M, LIVNY J, et al. TargetRNA2: identifying targets of small regulatory RNAs in bacteria [J]. Nucleic Acids Research, 2014, 42(W1): W124−W129. doi: 10.1093/nar/gku317 [12] CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli [J]. RNA Biology, 2018, 15(10): 1319−1335. doi: 10.1080/15476286.2018.1532252 [13] VOGEL J, LUISI B F. Hfq and its constellation of RNA [J]. Nature Reviews Microbiology, 2011, 9(8): 578−589. doi: 10.1038/nrmicro2615 [14] MORITA T, MAKI K, AIBA H. RNase E-based ribonucleoprotein complexes: Mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs [J]. Genes & Development, 2005, 19(18): 2176−2186. [15] PFEIFFER V, PAPENFORT K, LUCCHINI S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation [J]. Nature Structural & Molecular Biology, 2009, 16(8): 840−846. [16] PAPENFORT K, SAID N, WELSINK T, et al. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA [J]. Molecular Microbiology, 2009, 74(1): 139−158. doi: 10.1111/j.1365-2958.2009.06857.x [17] PAPENFORT K, BOUVIER M, MIKA F, et al. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20435−20440. doi: 10.1073/pnas.1009784107 [18] RICE J B, VANDERPOOL C K. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes [J]. Nucleic Acids Research, 2011, 39(9): 3806−3819. doi: 10.1093/nar/gkq1219 [19] WANG L, ELLIOTT M, ELLIOTT T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium [J]. Journal of Bacteriology, 1999, 181(4): 1211−1219. doi: 10.1128/JB.181.4.1211-1219.1999 [20] 程兴军, 刘马峰, 程安春. 革兰氏阴性菌血红素转运系统结构及功能特点 [J]. 中国生物化学与分子生物学报, 2014, 30(9):848−855.CHENG X J, LIU M F, CHENG A C. Structural and functional properties of the heme acquisition system in gram-negative bacteria [J]. Chinese Journal of Biochemistry and Molecular Biology, 2014, 30(9): 848−855.(in Chinese) [21] MACHADO I, GARRIDO V, HERNANDEZ L I, et al. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes [J]. Analytica Chimica Acta, 2019, 1054: 157−166. doi: 10.1016/j.aca.2018.12.027