• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鼠伤寒沙门菌sRNA SdsR靶基因的预测及验证分析

张家莉 令狐远凤 段世宇 潘永 杨琦

张家莉,令狐远凤,段世宇,等. 鼠伤寒沙门菌sRNA SdsR靶基因的预测及验证分析 [J]. 福建农业学报,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003
引用本文: 张家莉,令狐远凤,段世宇,等. 鼠伤寒沙门菌sRNA SdsR靶基因的预测及验证分析 [J]. 福建农业学报,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003
ZHANG J L, LINGHU Y F, DUAN S Y, et al. Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium [J]. Fujian Journal of Agricultural Sciences,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003
Citation: ZHANG J L, LINGHU Y F, DUAN S Y, et al. Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium [J]. Fujian Journal of Agricultural Sciences,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003

鼠伤寒沙门菌sRNA SdsR靶基因的预测及验证分析

doi: 10.19303/j.issn.1008-0384.2022.004.003
基金项目: 国家自然科学基金项目(31760740、31602065)
详细信息
    作者简介:

    张家莉(1998−),女,硕士研究生,研究方向:动物微生物( E-mail:1142153482@qq.com

    通讯作者:

    杨琦(1983−),男,博士,副教授,研究方向:动物微生物( E-mail:yangqinmg@163.com

  • 中图分类号: S 852.61

Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium

  • 摘要:   目的  筛选鼠伤寒沙门菌sRNA SdsR的靶基因,为明确sRNA与靶基因的互作以及沙门菌的致病机制奠定基础。  方法  利用TargetRNA2软件预测sRNA SdsR的靶标,基于前期的sRNA SdsR敲除后转录组测序结果,将预测到的基因注释到GO、KEGG以及eggNOG数据库中进行分析,通过RT-qPCR对预测到的杂交能量较高的部分靶基因进行验证。  结果  TargetRNA2软件预测到29个靶标,其中hemA、STM0951、mreC、STM1252、dcoC的杂交能量较高,且能与sRNA SdsR有连续的碱基匹配,分别与鼠伤寒沙门菌血红素合成、氧化还原过程、草酰乙酸脱羧酶的合成、膜的组成部分、细胞质蛋白的合成有关。RT-qPCR结果显示,相对于野生菌株3409,敲除sRNA SdsR后hemA、mreC的表达分别下调0.70和0.39倍;STM0951、STM1252、dcoC的表达分别上调0.51、0.35和1.86倍。  结论  hemASTM0951 、mreCSTM1252 、dcoC基因很可能受sRNA SdsR的直接调控且对某些靶基因的表达有促进作用。
  • 图  1  RT-qPCR验证结果

    Figure  1.  Results of RT-qPCR verification

    表  1  引物序列

    Table  1.   Primer sequence

    引物名称
    Primer name
    序列(5′-3′)
    Sequence (5′-3′)
    预扩增片段长度
    Pre-amplified
    fragment
    length/bp
    hemA-F ACGAATCTGCTCCGACTGAC 200
    hemA-R GCAAACTGGCGAACGCTTAT
    STM0951-F ACATTGAGCGGCGAGAAAGT 116
    STM0951-R ACCCACGATGTTATCCCGAC
    mreC-F ACAACAGCAGCAGATAGCGT 173
    mreC-R CGATATTCGCGTTGGCGATG
    STM1252-F ATGGCGAATCATGGCTACCG 85
    STM1252-R ATGCCGCCCTCGCTAATAAT
    dcoC-F CGGTGCTATTAGGTGAAGGCT 87
    dcoC-R GGATGGCGAAAATCAGCAGG
    GAPDH-F CCCAGATGGGATTAGCTAGTTG 133
    GAPDH-R ATTCCCCACTGCTGCCTCCCGT
    下载: 导出CSV

    表  2  TargetRNA2软件预测结果

    Table  2.   Prediction by TargetRNA2

    排名
    Rank
    基因ID
    Gene ID
    符号
    Symbol
    能量
    Energy
    P
    P value
    1 STM1777 hemA −16.51 0.000
    2 STM0951 −15.39 0.000
    3 STM3373 mreC −14.91 0.001
    4 STM1252 −12.84 0.004
    5 STM0766 dcoC −11.91 0.008
    6 STM3127 −11.74 0.009
    7 STM4500 yjhP −11.69 0.009
    8 STM0715 −11.03 0.013
    9 STM1088 pipB −10.89 0.015
    10 STM4583 trpR −10.75 0.016
    11 STM4599 yjjY −10.68 0.016
    12 STM1625 ydcI −10.52 0.018
    13 STM0691 −10.52 0.018
    14 STM3543 gntR −10.2 0.021
    15 STM0317 gpt −10.2 0.021
    16 STM3533 −10.1 0.022
    17 STM0246 metI −10.08 0.022
    18 STM1445 slyB −9.89 0.025
    19 STM0720 −9.7 0.027
    20 STM4520 −9.67 0.027
    21 STM3888 yieP −9.66 0.027
    22 STM2193 folE −9.22 0.034
    23 STM1440 sodC −9.2 0.034
    24 STM4089 menG −9.14 0.035
    25 STM0529 fdrA −8.69 0.042
    26 STM3203 ygiM −8.66 0.043
    27 STM3803 yidF −8.54 0.045
    28 STM3563 livH −8.52 0.046
    29 STM0051 rihC −8.43 0.047
    下载: 导出CSV

    表  3  靶位点预测结果

    Table  3.   Predicted target sites

    mRNA功能   
    Function   
    靶位点预测
    Target site prediction
    hemA 谷氨酰-tRNA还原酶
    Glutamyl-tRNA reductase
    SdsR 59
    hemA 20
    STM0951 细胞质蛋白
    Cytoplasmic protein
    SdsR 61
    STM0951 −65
    mreC 棒状决定蛋白质
    MreC Rod shape-determining protein MreC
    SdsR 63
    mreC 20
    STM1252 细胞质蛋白
    Cytoplasmic protein
    SdsR 58
    STM1252 19
    dcoC 草酰乙酸脱羧酶γ亚基
    Oxaloacetate decarboxylase subunit gamma
    SdsR 75
    dcoC −45
    下载: 导出CSV

    表  4  预测靶基因GO、KEGG和eggNOG数据库注释结果

    Table  4.   Annotation of predicted target genes by GO, KEGG, and eggNOG databases

    基因ID
    Gene ID
    长度
    Length/bp
    log2变化倍数
    log2FC
    符号
    Symbol
    GO富集分析
    GO
    KEGG富集
    分析
    KEGG
    直系同源蛋白
    分组比对
    eggNOG
    eggNOG 蛋白
    功能分类
    eggNOG Class
    STM1777 1276 —0.236124007 hemA 生物过程(原卟啉原IX生物合成过程、氧化还原过程);细胞成分(−);分子功能(槲皮素2,3-双加氧酶活性); 卟啉与
    叶绿素代谢
    proNOG01837 H:辅酶转运与代谢
    STM0951 868 0.509384983 STM0951 生物过程(氧化还原过程);细胞成分(−);分子功能(槲皮素2,3-双加氧酶活性);
    proNOG03931 R:仅适用于一般功能预测
    STM3373 1069 —0.391500147 merC 生物过程(细胞形状的调节);
    细胞成分(膜的组成部分;质膜);分子功能(−);
    COG1792; proNOG06657 M:细胞壁/
    膜/包膜生物发生
    STM1252 1049 0.346239576 STM1252 生物过程(−);细胞成分(−);分子功能(−); proNOG13117 G:碳水化合物运输和代谢
    STM0766 245 1.855584795 dcoC 生物过程(脂质代谢过程);细胞成分(质膜;膜的组成部分);分子功能(钠离子跨膜转运蛋白活性、草酰乙酸脱羧酶活性、水解酶活性); 丙酮酸代谢 proNOG71341 C:能源生产和转换
    下载: 导出CSV
  • [1] FRÖHLICH K S, PAPENFORT K. Regulation outside the box: New mechanisms for small RNAs [J]. Molecular Microbiology, 2020, 114(3): 363−366. doi: 10.1111/mmi.14523
    [2] RYAN D, MUKHERJEE M, SUAR M. The expanding targetome of small RNAs in Salmonella Typhimurium [J]. Biochimie, 2017, 137: 69−77. doi: 10.1016/j.biochi.2017.03.005
    [3] WATERS L S, STORZ G. Regulatory RNAs in bacteria [J]. Cell, 2009, 136(4): 615−628. doi: 10.1016/j.cell.2009.01.043
    [4] MELAMED S, PEER A, FAIGENBAUM-ROMM R, et al. Global mapping of small RNA-target interactions in bacteria [J]. Molecular Cell, 2016, 63(5): 884−897. doi: 10.1016/j.molcel.2016.07.026
    [5] BOUVIER M, SHARMA C M, MIKA F, et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation [J]. Molecular Cell, 2008, 32(6): 827−837. doi: 10.1016/j.molcel.2008.10.027
    [6] FRÖHLICH K S, PAPENFORT K, BERGER A A, et al. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD [J]. Nucleic Acids Research, 2011, 40(8): 3623−3640.
    [7] FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella [J]. Nucleic Acids Research, 2016, 44(21): 10406−10422.
    [8] TJADEN B, GOODWIN S S, OPDYKE J A, et al. Target prediction for small, noncoding RNAs in bacteria [J]. Nucleic Acids Research, 2006, 34(9): 2791−2802. doi: 10.1093/nar/gkl356
    [9] BUSCH A, RICHTER A S, BACKOFEN R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions [J]. Bioinformatics, 2008, 24(24): 2849−2856. doi: 10.1093/bioinformatics/btn544
    [10] EGGENHOFER F, TAFER H, STADLER P F, et al. RNApredator: fast accessibility-based prediction of sRNA targets [J]. Nucleic Acids Research, 2011, 39(S2): W149−W154.
    [11] KERY M B, FELDMAN M, LIVNY J, et al. TargetRNA2: identifying targets of small regulatory RNAs in bacteria [J]. Nucleic Acids Research, 2014, 42(W1): W124−W129. doi: 10.1093/nar/gku317
    [12] CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli [J]. RNA Biology, 2018, 15(10): 1319−1335. doi: 10.1080/15476286.2018.1532252
    [13] VOGEL J, LUISI B F. Hfq and its constellation of RNA [J]. Nature Reviews Microbiology, 2011, 9(8): 578−589. doi: 10.1038/nrmicro2615
    [14] MORITA T, MAKI K, AIBA H. RNase E-based ribonucleoprotein complexes: Mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs [J]. Genes & Development, 2005, 19(18): 2176−2186.
    [15] PFEIFFER V, PAPENFORT K, LUCCHINI S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation [J]. Nature Structural & Molecular Biology, 2009, 16(8): 840−846.
    [16] PAPENFORT K, SAID N, WELSINK T, et al. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA [J]. Molecular Microbiology, 2009, 74(1): 139−158. doi: 10.1111/j.1365-2958.2009.06857.x
    [17] PAPENFORT K, BOUVIER M, MIKA F, et al. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20435−20440. doi: 10.1073/pnas.1009784107
    [18] RICE J B, VANDERPOOL C K. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes [J]. Nucleic Acids Research, 2011, 39(9): 3806−3819. doi: 10.1093/nar/gkq1219
    [19] WANG L, ELLIOTT M, ELLIOTT T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium [J]. Journal of Bacteriology, 1999, 181(4): 1211−1219. doi: 10.1128/JB.181.4.1211-1219.1999
    [20] 程兴军, 刘马峰, 程安春. 革兰氏阴性菌血红素转运系统结构及功能特点 [J]. 中国生物化学与分子生物学报, 2014, 30(9):848−855.

    CHENG X J, LIU M F, CHENG A C. Structural and functional properties of the heme acquisition system in gram-negative bacteria [J]. Chinese Journal of Biochemistry and Molecular Biology, 2014, 30(9): 848−855.(in Chinese)
    [21] MACHADO I, GARRIDO V, HERNANDEZ L I, et al. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes [J]. Analytica Chimica Acta, 2019, 1054: 157−166. doi: 10.1016/j.aca.2018.12.027
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  157
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-03-09
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回