Ovarian Proteomics of Yaks in Pregnancy and Postpartum Anestrus
-
摘要:
目的 研究牦牛产后乏情期和妊娠期卵巢中差异蛋白的表达情况。 方法 选择青海省湟源县一户牧民自然放牧牛群中处于妊娠期和产后乏情期牦牛各3头为研究对象,采集卵巢组织,利用TMT定量蛋白质组学技术发掘不同时期卵巢差异表达蛋白。 结果 妊娠期和产后乏情期卵巢组织中差异表达蛋白有57个,其中乏情期卵巢组织中上调蛋白38个,下调蛋白19个;COG分析发现,差异表达蛋白功能集中于能量的生产与转化、蛋白质周转、氨基酸转运与代谢等过程;GO分析发现,差异表达蛋白集中于代谢、繁殖等生物过程,涉及细胞器成分等细胞组分,参与转运活性等分子功能;KEGG分析发现,差异表达蛋白共参与27条信号通路,其中,缓激肽(BK)、胆固醇侧链裂解酶(P450scc)参与卵巢类固醇激素生成通路,谷胱甘肽过氧化物酶1(GSH-P1)、谷胱甘肽S转移酶A2(GSTA2)、谷胱甘肽转移酶(GST)和天冬氨酸转氨酶(AST)参与氨基酸转运与蛋白质代谢通路,磷脂酰肌醇-3-激酶蛋白(PI3K)参与PI3K-Akt细胞凋亡信号通路。 结论 BK、P450scc、GSH-P1、GSTA2、GST、AST和PI3K与牦牛乏情的产生密切相关。 Abstract:Objective Differentially expressed proteins (DEPs) in ovaries of yak s in pregnancy and postpartum anestrus were identified. Method Ovarian tissues of 3 randomly selected yaks each in pregnancy or postpartum anestrus from a natural grazing herd in Huangyuan County, Qinghai Province were sampled for DEP identification by the TMT method. Result Thirty-eight upregulated and 19 downregulated DEPs were found in the yaks. The COG analysis indicated the major functions of the proteins related to the production and transformation of energy, protein turnover, and amino acid transport and metabolism. The Go analysis showed that they were mainly annotated in the biological processes of metabolism and reproduction, associated with the cellular component including organelle cell components, and participated in molecular function including the molecular transport activity. Whereas KEGG revealed their involvements in 27 signaling pathways that included BK and P450scc in the ovarian steroid hormone production, GSH-P1, GSTA2, GST, and AST in the amino acid transport and protein metabolism, and PI3K in the PI3K-Akt apoptosis signaling. Conclusion The current study identified specific DEPs in yak ovary, i.e., BK, P450scc, GSH-P1, GSTA2, GST, AST, and PI3K, that were closely related to the onset of anestrus in the animal. -
Key words:
- Pregnancy /
- postpartum anestrus /
- proteomics /
- ovary /
- yak
-
表 1 差异表达蛋白信息统计
Table 1. Statistical information on DEPs
序号
Number标识
ID蛋白名称
Protein names调节
Regulated1 Q4U0F3 热休克 70 kDa 蛋白 1B (HSP70.2) Heat shock 70 kDa protein 1B (HSP70.2) 下调 Down 2 D4QBF3 血红蛋白β Hemoglobin beta 上调 Up 3 L8I5Y3 胶原结合蛋白 Collagen-binding protein 上调 Up 4 A0A5A9Q697 未知 Deleted 上调 Up 5 A0A5A9QF16 未知 Deleted 下调 Down 6 A0A5A9PW39 未知 Deleted 上调 Up 7 L8J5R1 谷胱甘肽 S-转移酶 A2(片段) Glutathione S-transferase A2 (Fragment) 上调 Up 8 A0A5A9PVT1 未知 Deleted 上调 Up 9 L8HPR0 缓激肽 Bradykinin 下调 Down 10 A0A5A9QYU8 未知 Deleted 下调 Down 11 L8ICZ3 天冬氨酸氨基转移酶 (EC 2.6.1.1) Aspartate aminotransferase (EC 2.6.1.1) 上调 Up 12 A0A5A9Q9K0 未知 Deleted 下调 Down 13 A0A5A9QIY6 未知 Deleted 上调 Up 14 L8HXR0 胆固醇侧链裂解酶,线粒体(EC 1.14.15.6)
Cholesterol side-chain cleavage enzyme, mitochondrial (EC 1.14.15.6)上调 Up 15 L8HVE1 EPM2A相互作用蛋1 EPM2A-interacting protein 1 上调 Up 16 L8INV1 肽基脯氨酰顺反异构酶 (EC 5.2.1.8) Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8) 上调 Up 17 A0A5A9R284 未知 Deleted 上调 Up 18 A0A5A9QP43 未知 Deleted 上调 Up 19 A0A5A9Q6B8 未知 Deleted 上调 Up 20 A0A5A9QVH4 未知 Deleted 下调 Down 21 L8IKU4 D-3-磷酸甘油酸脱氢酶 (EC1.1.1.95) D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) 上调 Up 22 P00435 谷胱甘肽过氧化物酶 1 (GPx-1) (EC 1.11.1.9) Glutathione peroxidase 1 (GPx-1) (EC 1.11.1.9) 上调 Up 23 L8HR71 视网膜脱氢酶2 Retinal dehydrogenase 2 下调 Down 24 L8IBL3 氨基肽酶 (EC 3.4.11.-)(片段) Aminopeptidase (EC 3.4.11.-) (Fragment) 上调 Up 25 A0A5A9QJL1 未知 Deleted 上调 Up 26 A0A5A9Q7A9 未知 Deleted 上调 Up 27 A0A5A9Q4N6 未知 Deleted 下调 Down 28 L8HS12 未鉴定的蛋白质(片段) Uncharacterized protein (Fragment) 上调 Up 29 L8IZP3 肾上腺素,线粒体(片段) Adrenodoxin, mitochondrial (Fragment) 上调 Up 30 L8I6P6 非综合征性听力障碍蛋白5样蛋白 Non-syndromic hearing impairment protein 5-like protein 上调 Up 31 L8IL81 α-2-巨球蛋白受体相关蛋白 Alpha-2-macroglobulin receptor-associated protein 上调 Up 32 L8HM51 胰蛋白酶抑制剂(片段) Pancreatic trypsin inhibitor (Fragment) 上调 Up 33 L8HXY3 含有 Ig 样结构域的蛋白质(片段) Ig-like domain-containing protein (Fragment) 上调 Up 34 L8HVF6 硒蛋白 M Selenoprotein M 上调 Up 35 L8HX05 神经元特异性钙结合蛋白海马钙素 Neuron-specific calcium-binding protein hippocalcin 下调 Down 36 A0A5A9QIW4 未知 Deleted 下调 Down 37 L8HVH6 中性粒细胞明胶酶相关脂质运载蛋白 Neutrophil gelatinase-associated lipocalin 上调 Up 38 A0A5A9QMW0 未知 Deleted 上调 Up 39 L8IS41 E3 UFM1-蛋白连接酶 1 E3 UFM1-protein ligase 1 下调 Down 40 L8HY99 含三部分基序的蛋白质 3(片段) Tripartite motif-containing protein 3 (Fragment) 下调 Down 41 Q860K0 MHC I 类抗原(片段) MHC class I antigen (Fragment) 下调 Down 42 A0A5A9QEA2 未知 Deleted 上调 Up 43 L8HU38 含有 Ig 样结构域的蛋白质(片段) Ig-like domain-containing protein (Fragment) 下调 Down 44 L8I6S3 谷胱甘肽转移酶(EC 2.5.1.18)(片段) Glutathione transferase (EC 2.5.1.18) (Fragment) 下调 Down 45 A0A5A9QAJ2 未知 Deleted 上调 Up 46 L8HUU8 SRA 茎环相互作用 RNA 结合蛋白,线粒体
SRA stem-loop-interacting RNA-binding protein, mitochondrial上调 Up 47 L8I2B7 碱性磷酸酶 (EC 3.1.3.1)(片段) Alkaline phosphatase (EC 3.1.3.1) (Fragment) 上调 Up 48 A0A5A9QZ00 未知 Deleted 下调 Down 49 A0A5A9Q3H5 未知 Deleted 下调 Down 50 A0A5A9R1T6 未知 Deleted 上调 Up 51 L8HU32 含有 Ig 样结构域的蛋白质(片段) Ig-like domain-containing protein (Fragment) 下调 Down 52 A0A5A9Q609 未知 Deleted 上调 Up 53 A0A5A9QMW5 未知 Deleted 上调 Up 54 L8IIL6 醌氧化还原酶 PIG3(片段) Quinone oxidoreductase PIG3 (Fragment) 上调 Up 55 L8IUD0 含有 EGF 样模块的粘蛋白样激素受体样 1(片段)
EGF-like module-containing mucin-like hormone receptor-like 1 (Fragment)上调 Up 56 L8IC02 ER 腔蛋白保留受体(片段) ER lumen protein-retaining receptor (Fragment) 上调 Up 57 L8HUM8 磷脂酰肌醇-4,5-二磷酸 3-激酶 (EC 2.7.1.153) Phosphatidylinositol-4,5-bisphosphate 3-kinase (EC 2.7.1.153) 下调 Down -
[1] 刘敏清, 何翃闳, 潘阳阳, 等. HSP27基因在牦牛卵母细胞和体外早期胚胎中的表达 [J]. 核农学报, 2021, 35(12):2716−2723. doi: 10.11869/j.issn.100-8551.2021.12.2716LIU M Q, HE H H, PAN Y Y, et al. Expression of HSP27 gene in yak oocytes and early embryos in vitro [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2716−2723.(in Chinese) doi: 10.11869/j.issn.100-8551.2021.12.2716 [2] 赵寿保, 武甫德, 裴杰, 等. 牦牛提前发情调控技术的研究 [J]. 中国牛业科学, 2018, 44(3):34−36. doi: 10.3969/j.issn.1001-9111.2018.03.009ZHAO S B, WU F D, PEI J, et al. Study on technology of early Oestrus control in yak [J]. China Cattle Science, 2018, 44(3): 34−36.(in Chinese) doi: 10.3969/j.issn.1001-9111.2018.03.009 [3] NASCIMENTO T, SOARES LOPES E Jr, DE SOUZA MIRANDA M, et al. Factors affecting postpartum ovarian activity of goats in tropical semi-arid region [J]. Revista De La Facultad De Ciencias Agrarias UNCuyo, 2021, 53(1): 330−345. doi: 10.48162/rev.39.032 [4] 季美超, 付斌, 张养军. 基于质谱的蛋白质组学方法新进展 [J]. 质谱学报, 2021, 42(5):862−877.JI M C, FU B, ZHANG Y J. Recent progress of analytical methods of proteomics based on mass spectrometry [J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 862−877.(in Chinese) [5] 付莉霞, 程子倩, 王洪, 等. 基于质谱的血液蛋白质组学: 血液学研究的新焦点 [J]. 中国细胞生物学学报, 2022, 44(1):204−213.FU L X, CHENG Z Q, WANG H, et al. MS-based blood proteomics: Emerging research focus in hematology [J]. Chinese Journal of Cell Biology, 2022, 44(1): 204−213.(in Chinese) [6] BHATTACHARYA T. Controlling mixing and segregation in time periodic granular flows[D]. Pittsburgh: University of Pittsburgh, 2011 [7] 海超. 褪黑素对牛冷冻保存精子的蛋白质组学研究[D]. 呼和浩特: 内蒙古大学, 2020.HAI C. Proteomics study on the role of melatonin in frozen bovine sperm[D]. Hohhot: Inner Mongolia University, 2020. (in Chinese) [8] 赵国顺. 天祝白牦牛和双峰驼卵泡发育过程中卵泡液差异蛋白质组学研究[D]. 兰州: 甘肃农业大学, 2013.ZHAO G S. Comparative proteomics studies of follicular fluid during the different periods of follicular development in Tianzhu white yak and Bactrian camel[D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese) [9] 阮崇美. 不同发育期白牦牛睾丸蛋白质组学分析及生殖相关候选基因HSP60生物学研究[D]. 兰州: 甘肃农业大学, 2017.RUAN C M. Proteomic analysis of white yak testis in different developmental stages and reproductive candidate gene HSP60 biology research[D]. Lanzhou: Gansu Agricultural University, 2017. (in Chinese) [10] PEI J, SONG R D, BAO P J, et al. Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak [J]. BMC Veterinary Research, 2022, 18(1): 34. doi: 10.1186/s12917-021-03097-0 [11] ZHAO X X. A proteomics study of Tianzhu white yak ovary during estrus and pregnancy [J]. Pakistan Veterinary Journal, 2014, 34(1): 87−91. [12] HUO S D, CHEN Z, LI S Y, et al. A comparative transcriptome and proteomics study of post-partum ovarian cycle arrest in yaks (Bos grunniens) [J]. Reproduction in Domestic Animals, 2022, 57(3): 292−303. doi: 10.1111/rda.14059 [13] 张寿, 王应安, 贾荣莉, 等. 高原牦牛卵巢及卵泡的形态观测 [J]. 中国兽医科技, 2001, 31(6):32−33. doi: 10.3969/j.issn.1673-4696.2001.06.016ZHANG S, WANG Y A, JIA R L, et al. Morphological observation of ovary and follicle in plateau yak [J]. Chinese Journal of Veterinary Science and Technology, 2001, 31(6): 32−33.(in Chinese) doi: 10.3969/j.issn.1673-4696.2001.06.016 [14] 李晨雷, 齐昆龙, 刘蓥珂, 等. 大白母猪发情期前后唾液蛋白组学分析 [J]. 中国农业大学学报, 2022, 27(2):98−109. doi: 10.11841/j.issn.1007-4333.2022.02.10LI C L, QI K L, LIU Y K, et al. Salivary proteomics analysis of large white sows before and after estrus [J]. Journal of China Agricultural University, 2022, 27(2): 98−109.(in Chinese) doi: 10.11841/j.issn.1007-4333.2022.02.10 [15] 纪万里, 王婷婷, 安叡, 等. 基于定量蛋白质组学技术探究半夏泻心汤对慢性胃炎大鼠影响的作用机制 [J]. 中国实验方剂学杂志, 2021, 27(9):1−8.JI W L, WANG T T, AN R, et al. Mechanism of Banxia Xiexintang on rats with chronic gastritis based on quantitative proteomics [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(9): 1−8.(in Chinese) [16] EFIMOVA V S, ISAEVA L V, OREKHOV P S, et al. Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae: Bovine P450scc system expression using 2A peptides [J]. Journal of Biotechnology, 2021, 325: 186−195. doi: 10.1016/j.jbiotec.2020.10.028 [17] ZHU H B, REN Q L, YAN Z Y, et al. Human HAND1 inhibits the conversion of cholesterol to steroids in trophoblasts[J]. Journal of Genetics and Genomics, 2021. [18] ONO K, YANO A, ISHIMURA K. Effect of peripherally derived steroid hormones on the expression of steroidogenic enzymes in the rat choroid plexus [J]. The Journal of Medical Investigation:JMI, 2021, 68(3.4): 238−243. doi: 10.2152/jmi.68.238 [19] 邹鹏达. LH诱导山羊卵泡膜细胞Akt磷酸化及对雄激素生成的影响[D]. 杨凌: 西北农林科技大学, 2016.ZOU P D. Luteinizing hormone-induced Akt phosphorylation and its effect on androgen production in goat theca cells[D]. Yangling: Northwest A & F University, 2016. (in Chinese) [20] 美日阿依·买合买提, 朱梦婷, 牟健, 等. 舍饲哈萨克母羊在乏情期补饲精料对其诱导发情效果及相关生殖激素变化规律的研究 [J]. 石河子大学学报(自然科学版), 2020, 38(6):686−690.MEHRAY·MAIHEMAITI, ZHU M T, MU J, et al. Study on the effects of supplementary feeding of feed during non-estrus period induces estrus and reproductive hormone changes in Kazak sheep [J]. Journal of Shihezi University (Natural Science), 2020, 38(6): 686−690.(in Chinese) [21] 王洋洋. FSH对牛体外有腔卵泡膜细胞和颗粒细胞类固醇激素合成相关基因表达的影响[D]. 北京: 中国农业科学院, 2019.WANG Y Y. Effects of FSH on gene expression related to steroidogenesis in bovine follicles cultured in vitro[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) [22] 孙金莉, 颜晓红, 林莉, 等. 体外受精长方案晚卵泡期不同浓度孕酮干预对妊娠结局的影响 [J]. 中华生殖与避孕杂志, 2019, 39(10):803−809.SUN J L, YAN X H, LIN L, et al. Influence of the different concentration of progesterone intervention on pregnancy outcomes in late follicular phase of gonadotropin-releasing hormone agonist cycles of in vitro fertilization [J]. Chinese Journal of Reproduction and Contraception, 2019, 39(10): 803−809.(in Chinese) [23] GREISEN S, LEDET T, OVESEN P. Effects of androstenedione, insulin and luteinizing hormone on steroidogenesis in human granulosa luteal cells [J]. Human Reproduction, 2001, 16(10): 2061−2065. doi: 10.1093/humrep/16.10.2061 [24] RYTELEWSKA E, KIEZUN M, KISIELEWSKA K, et al. Chemerin as a modulator of ovarian steroidogenesis in pigs: An in vitro study [J]. Theriogenology, 2021, 160: 95−101. doi: 10.1016/j.theriogenology.2020.10.040 [25] 段宇, 夏成, 吴凌, 等. 产后乏情奶牛血浆生化参数的变化 [J]. 中国兽医杂志, 2014, 50(4):26−28. doi: 10.3969/j.issn.0529-6005.2014.04.009DUAN Y, XIA C, WU L, et al. Alterations of plasma metabolites and hormones in postpartum anestrus cows [J]. Chinese Journal of Veterinary Medicine, 2014, 50(4): 26−28.(in Chinese) doi: 10.3969/j.issn.0529-6005.2014.04.009 [26] CONNOLLY L, BRIGGS E. Acquired pyroglutamic acidaemia in a critically ill patient with chronic paracetamol use: A case report[J]. SAGE Open Medical Case Reports, 2022, 10: 2050313X211068561. [27] 彭影琦. L-茶氨酸对肠道吸收与转运氨基酸的调节作用及机制[D]. 长沙: 湖南农业大学, 2019.PENG Y Q. Regulation and mechanism of L-theanine on intestinal absorption and transport of amino acids[D]. Changsha: Hunan Agricultural University, 2019. (in Chinese) [28] ZHANG J, WANG G, ZHAO C, et al. 1H NMR plasma metabolomic profiling of ovarian quiescence in energy balanced postpartum dairy cows [J]. Veterinary Quarterly, 2018, 38(1): 47−52. doi: 10.1080/01652176.2018.1473660 [29] UDDIN A M, ATIKUZZAMAN M, HOSSAIN M K. Postpartum cyclicity of Holstein-Friesian crossbred cows shows relation with serum biochemical profiles during 45-60 days postpartum [J]. Pakistan Veterinary Journal, 2019, 40(2): 257−260. [30] GO N. Regulation of primordial follicle formation, dormancy, and activation in mice [J]. The Journal of Reproduction and Development, 2021, 67(3): 189−195. doi: 10.1262/jrd.2021-040 [31] 姜凤丽, 王晓滨, 宗婧, 等. PI3K-Akt/m TOR信号通路对卵巢早衰相关性研究进展 [J]. 黑龙江科学, 2019, 10(2):50−51. doi: 10.3969/j.issn.1674-8646.2019.02.016JIANG F L, WANG X B, ZONG J, et al. Research progress on the correlation between PI3K-Akt/mTOR signaling pathway and premature ovarian failure [J]. Heilongjiang Science, 2019, 10(2): 50−51.(in Chinese) doi: 10.3969/j.issn.1674-8646.2019.02.016 [32] 胡小靖. Mfn2在PCOS大鼠卵巢的表达及其对大鼠卵泡发育的影响与机制的初步探讨[D]. 重庆: 重庆医科大学, 2014.HU X J. Expression of Mitofusin2in pcos rat and its mechanism of effect on rat follicle development[D]. Chongqing: Chongqing Medical University, 2014. (in Chinese) [33] 李德保, 周莉, 孙祖越. 早发性卵巢功能不全相关信号通路研究进展 [J]. 中国比较医学杂志, 2020, 30(2):121−127. doi: 10.3969/j.issn.1671-7856.2020.02.019LI D B, ZHOU L, SUN Z Y. Research advances of premature ovarian insufficiency-related signaling pathways [J]. Chinese Journal of Comparative Medicine, 2020, 30(2): 121−127.(in Chinese) doi: 10.3969/j.issn.1671-7856.2020.02.019 [34] SANTOS J M S, LINS T L B G, BARBERINO R S, et al. Kaempferol promotes primordial follicle activation through the phosphatidylinositol 3-kinase/protein kinase B signaling pathway and reduces DNA fragmentation of sheep preantral follicles cultured in vitro [J]. Molecular Reproduction and Development, 2019, 86(3): 319−329. doi: 10.1002/mrd.23107 [35] ZHANG T, HE M, ZHAO L, et al. HDAC6 regulates primordial follicle activation through mTOR signaling pathway [J]. Cell Death & Disease, 2021, 12: 559. [36] 张焱, 张华. 哺乳动物卵巢卵泡发育调控机制研究进展 [J]. 生理学报, 2020, 72(1):63−74.ZHANG Y, ZHANG H. Research advances in regulating mechanisms of mammalian ovarian folliculogenesis [J]. Acta Physiologica Sinica, 2020, 72(1): 63−74.(in Chinese) [37] 梁菁媛, 邓彦飞, 赵易敏, 等. 哺乳动物原始卵泡体外培养与激活调控研究进展 [J]. 中国畜牧杂志, 2019, 55(7):5−9.LIANG J Y, DENG Y F, ZHAO Y M, et al. Research progress on in vitro culture and activation regulation of mammalian primordial follicles retraction [J]. Chinese Journal of Animal Science, 2019, 55(7): 5−9.(in Chinese) [38] WATANABE R, SASAKI S, KIMURA N. Activation of autophagy in early neonatal mice increases primordial follicle number and improves lifelong fertility [J]. Biology of Reproduction, 2019, 102(2): 399−411. [39] CORDEIRO C N, CHRISTIANSON M S, SELTER J H, et al. In vitro activation: A possible new frontier for treatment of primary ovarian insufficiency [J]. Reproductive Sciences (Thousand Oaks, Calif ), 2016, 23(4): 429−438. doi: 10.1177/1933719115625842