Enhanced Thermophilic α-Cyclodextrin Glycosyltransferase Expression by Optimizing Target Signal Peptide in Bacillus subtilis
-
摘要:
目的 探索嗜热α-环糊精葡萄糖基转移酶(α-CGTase)在枯草芽胞杆菌(Bacillus subtilis RIK1285)中的高效胞外表达条件。 方法 以来源于枯草芽胞杆菌的173种信号肽为基础构建信号肽文库,筛选获得9条表达效率更高的信号肽,其中citH信号肽引导分泌效率最高。在此基础上,为进一步优化α-CGTase的分泌表达,对信号肽citH的Gly2、Asn3及Thr4进行饱和突变,并比较不同突变体的引导分泌效率。 结果 突变体G2R-N3K-T4L-CGT的引导分泌效率最高,重组枯草芽胞杆菌的胞外α-CGTase活力高达(14.2±0.11 )U·mL−1,相比未突变信号肽[(9.6±0.29 )U·mL−1],分泌效率提高了47.9%;是野生菌株嗜热地芽胞杆菌Geobacillus caldoxylosilyticus.CHB1(0.66 U·mL−1)的21.5倍。重组α-CGTase的最适反应pH值为6.0,最适反应温度为60 ℃,在50 ℃以内稳定;Mg2+、Ca2+对α-环糊精酶活性具有一定的激活作用。 结论 信号肽对环糊精酶在芽胞杆菌中的高效表达具有重要影响,为外源蛋白在芽胞杆菌中的表达提供一定借鉴。 -
关键词:
- 信号肽 /
- α-环糊精葡萄糖基转移酶 /
- 饱和突变 /
- 枯草芽胞杆菌
Abstract:Objective Conditions to achieve high-efficiency secretory expression of the thermophilic α-cyclodextrin glucosyltransferase (α-CGTase) in Bacillus subtilis RIK1285 were explored to understand the role played by signal peptide. Method A library based on 173 signal peptides from B. subtilis was constructed to identify the highest secretion efficiency candidate. Using the saturation mutagenesis of segments in the selected signal peptide, the secretion expression of α-CGTase was enhanced. Result There were 9 signal peptides with high expression efficiency identified from the library. Among them, the signal peptide citH showed the highest secretion efficiency. Subsequently, the saturation mutagenesis of Gly2, Asn3, and Thr4 of citH produced a mutant, G2R-N3K-T4L-CGT, with an extracellular activity of α-CGTase as high as 14.2 U·mL−1 and a secretion efficiency increased by 47.9% over the non-mutated signal peptide (9.6 U·mL−1), which was 21.5 times higher than that of the wild-type Geobacillus caldoxylosilyticus CHB1 (0.66 U·mL−1). The purified α-CGTase had a maximal activity at pH 6.0 and 60 ℃, was thermally stable within 50 ℃, and could be activated by Mg2+ and Ca2+. Conclusion The important effect signal peptide had on the high-efficiency expression of cyclodextrinase in B. subtilis was verified. The result provided a new and valuable reference for studies on the expression of extraneous proteins in the bacteria. -
表 1 citH信号肽第二位Gly饱和突变引物
Table 1. Primers for saturated mutation of G2
突变体
Muntants引物名称
Primer name引物序列
Primer sequence(5′–3′)G2F G2F-F
G2F-RAGAGGGACGCGTATGTTCAATACTCGTAAAAAAG
CTTTTTTACGAGTATTGAACATACGCGTCCCTCTG2M G2M-F
G2M-RAGAGGGACGCGTATGATGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCATCATACGCGTCCCTCTG2P G2P-F
G2P-RAGAGGGACGCGTATGCCGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCGGCATACGCGTCCCTCTG2A G2A-F
G2A-RAGAGGGACGCGTATGGCAAATACTCGTAAAAAAG
CTTTTTTACGAGTATTTGCCATACGCGTCCCTCTG2Y G2Y-F
G2Y-RAGAGGGACGCGTATGTATAATACTCGTAAAAAAG
CTTTTTTACGAGTATTATACATACGCGTCCCTCTG2H G2H-F
G2H-RAGAGGGACGCGTATGCATAATACTCGTAAAAAAG
CTTTTTTACGAGTATTATGCATACGCGTCCCTCTG2K G2K-F
G2K-RAGAGGGACGCGTATGAAGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCTTCATACGCGTCCCTCTG2D G2D-F
G2D-RAGAGGGACGCGTATGGATAATACTCGTAAAAAAG
CTTTTTTACGAGTATTATCCATACGCGTCCCTCTG2C G2C-F
G2C-RAGAGGGACGCGTATGTGCAATACTCGTAAAAAAG
CTTTTTTACGAGTATTGCACATACGCGTCCCTCTG2Q G2Q-F
G2Q-RAGAGGGACGCGTATGCAGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCTGCATACGCGTCCCTCTG2L G2L-F
G2L-RAGAGGGACGCGTATGCTAAATACTCGTAAAAAAG
CTTTTTTACGAGTATTTAGCATACGCGTCCCTCTG2I G2I-F
G2I-RAGAGGGACGCGTATGATTAATACTCGTAAAAAAG
CTTTTTTACGAGTATTAATCATACGCGTCCCTCTG2V G2V-F
G2V-RAGAGGGACGCGTATGGTGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCACCATACGCGTCCCTCTG2S G2S-F
G2S-RAGAGGGACGCGTATGTCTAATACTCGTAAAAAAG
CTTTTTTACGAGTATTAGACATACGCGTCCCTCTG2T G2T-F
G2T-RAGAGGGACGCGTATGACCAATACTCGTAAAAAAG
CTTTTTTACGAGTATTGGTCATACGCGTCCCTCTG2N G2N-F
G2N-RAGAGGGACGCGTATGAATAATACTCGTAAAAAAG
CTTTTTTACGAGTATTATTCATACGCGTCCCTCTG2E G2E-F
G2E-RAGAGGGACGCGTATGGAAAATACTCGTAAAAAAG
CTTTTTTACGAGTATTTTCCATACGCGTCCCTCTG2R G2R-F
G2R-RAGAGGGACGCGTATGCGGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCCGCATACGCGTCCCTCTG2W G2R-F
G2R-RAGAGGGACGCGTATGTGGAATACTCGTAAAAAAG
CTTTTTTACGAGTATTCCACATACGCGTCCCTCT注:带下划线的碱基序列为突变氨基酸的碱基密码子。
Note: the underlined base is the base codon of the mutant amino acid.表 2 信号肽氨基酸序列表
Table 2. Amino acid sequence of signal peptide
信号肽名称
Signal peptide信号肽氨基酸序列
Signal peptide amino acid sequencepBE-aprE-CGT MRSKKLWISLLFALTLIFTMAFSNMSVQA pBE-citH-CGT MGNTRKKVSVIGAGFTGATTAFLIAQKELADV pBE-ybdG-CGT MKTLWKVLKIVFVSLAALVLLVSVS pBE-amyE-CGT MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAASA pBE-nprE-CGT MGLGKKLSVAVAASFMSLSISLPGVQA pBE-bpr-CGT MRKKTKNRLISSVLSTVVISSLLFPGAAGA pBE-bglS-CGT MPYLKRVLLLLVTGLFMSLFAVTATASA pBE-bglC-CGT MKRSISIFITCLLITLLTMGGMIASPASA pBE-sacB-CGT MNIKKFAKQATVLTFTTALLAGGATQAFA pBE-yweA-CGT MLKRTSFVSSLFISSAVLLSILLPSGQAHA -
[1] DEL VALLE E M M. Cyclodextrins and their uses: A review [J]. Process Biochemistry, 2004, 39(9): 1033−1046. doi: 10.1016/S0032-9592(03)00258-9 [2] LI Z F, WANG M, WANG F, et al. Gamma-Cyclodextrin: a review on enzymatic production and applications [J]. Applied Microbiology and Biotechnology, 2007, 77(2): 245−255. doi: 10.1007/s00253-007-1166-7 [3] SZEJTLI J. Introduction and general overview of cyclodextrin chemistry [J]. Chemical Reviews, 1998, 98(5): 1743−1754. [4] ASTRAY G, GONZALEZ-BARREIRO C, MEJUTO J C, et al. A review on the use of cyclodextrins in foods [J]. Food Hydrocolloids, 2009, 23(7): 1631−1640. doi: 10.1016/j.foodhyd.2009.01.001 [5] SZENTE L, SZEMÁN J. Cyclodextrins in analytical chemistry: Host-guest type molecular recognition [J]. Analytical Chemistry, 2013, 85(17): 8024−8030. doi: 10.1021/ac400639y [6] DER VEEN BA V, UITDEHAAG J C, DIJKSTRA B W, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity [J]. Biochimica et Biophysica Acta, 2000, 1543(2): 336−360. doi: 10.1016/S0167-4838(00)00233-8 [7] KELLY R M, DIJKHUIZEN L, LEEMHUIS H. The evolution of cyclodextrin glucanotransferase product specificity [J]. Applied Microbiology and Biotechnology, 2009, 84(1): 119−133. doi: 10.1007/s00253-009-1988-6 [8] LEEMHUIS H, KELLY R M, DIJKHUIZEN L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications [J]. Applied Microbiology and Biotechnology, 2010, 85(4): 823−835. doi: 10.1007/s00253-009-2221-3 [9] LIU L, LIU Y F, SHIN H D, et al. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology [J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6113−6127. doi: 10.1007/s00253-013-4960-4 [10] VAN DIJL J M, HECKER M. Bacillus subtilis: From soil bacterium to super-secreting cell factory [J]. Microbial Cell Factories, 2013, 12: 3. doi: 10.1186/1475-2859-12-3 [11] 张佳瑜, 吴丹, 李兆丰, 等. 来源于软化芽孢杆菌的环糊精葡萄糖基转移酶在毕赤酵母和枯草杆菌中的表达 [J]. 生物工程学报, 2009, 25(12):1948−1954. doi: 10.3321/j.issn:1000-3061.2009.12.026ZHANG J Y, WU D, LI Z F, et al. Expression of Paenibacillus macerans cyclodextrin glycosyltransferase in Pichia pastoris and Bacillus subtilis [J]. Chinese Journal of Biotechnology, 2009, 25(12): 1948−1954.(in Chinese) doi: 10.3321/j.issn:1000-3061.2009.12.026 [12] KANG Z, YANG S, DU G C, et al. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species [J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(11): 1599−1607. doi: 10.1007/s10295-014-1506-4 [13] 姚小琳, 张涛, 江波. 来源于Paenibacillus campinasensis SK13.001的β-环糊精葡萄糖基转移酶在大肠杆菌中的表达和反应条件优化 [J]. 食品与发酵工业, 2020, 46(12):153−157,165.YAO X L, ZHANG T, JIANG B. Expression of β-cyclodextrin glucosyltransferase from Paenibacillus campinasensis SK13.001 in Escherichia coli and the optimization of reaction conditions [J]. Food and Fermentation Industries, 2020, 46(12): 153−157,165.(in Chinese) [14] 黄燕, 汪天, 吴敬, 等. 重组Bacillus subtilis产B. stearothermophilus环糊精葡萄糖基转移酶的发酵优化 [J]. 基因组学与应用生物学, 2020, 39(2):629−635.HUANG Y, WANG T, WU J, et al. Fermentation optimization of B. stearothermophilus cyclo-dextrin glucosyl transferase produced by recombinant Bacillus subtilis [J]. Genomics and Applied Biology, 2020, 39(2): 629−635.(in Chinese) [15] 陈龙军, 陈济琛, 林晓栩, 等. 嗜热芽孢杆菌CHB1环糊精酶基因优化及其在毕赤酵母中的表达 [J]. 食品与生物技术学报, 2018, 37(9):994−999. doi: 10.3969/j.issn.1673-1689.2018.09.014CHEN L J, CHEN J C, LIN X X, et al. Codon optimization and expression of cyclodextrin glycosyltransferase from gebacillius sp. CHB1 in Pichia pastoris [J]. Journal of Food Science and Biotechnology, 2018, 37(9): 994−999.(in Chinese) doi: 10.3969/j.issn.1673-1689.2018.09.014 [16] 陈龙军, 陈济琛, 林新坚, 等. 环糊精酶基因在毕赤酵母中的组成型表达 [J]. 福建农业学报, 2017, 32(1):82−86.CHEN L J, CHEN J C, LIN X J, et al. Constitutive expression of cyclodextrin glycosyltransferase in Pichia pastoris [J]. Fujian Journal of Agricultural Sciences, 2017, 32(1): 82−86.(in Chinese) [17] 蔡海松, 林晓栩, 郭永华, 等. 信号肽及化学通透剂对环糊精葡萄糖基转移酶胞外分泌的影响 [J]. 微生物学通报, 2017, 44(3):601−610.CAI H S, LIN X X, GUO Y H, et al. Effects of different signal peptides and chemical penetrators on extracellular production of recombinant cyclodextrin glycosyltransferase [J]. Microbiology China, 2017, 44(3): 601−610.(in Chinese) [18] GREEN M R, SAMBROOK J. Molecular cloning–A laboratory manual[M]. New York: Cold spring harbor laboratory, 2012. [19] 刘金岚, 付刚, 董会娜, 等. 通过信号肽筛选优化耐高温α-淀粉酶在枯草芽孢杆菌中的分泌 [J]. 工业微生物, 2017, 47(1):17−23. doi: 10.3969/j.issn.1001-6678.2017.01.003LIU J L, FU G, DONG H N, et al. Optimization of thermostable α-amylase secretion by screening of optimal signal peptide in Bacillus subtilis [J]. Industrial Microbiology, 2017, 47(1): 17−23.(in Chinese) doi: 10.3969/j.issn.1001-6678.2017.01.003 [20] 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达 [J]. 食品科学, 2018, 39(18):100−108. doi: 10.7506/spkx1002-6630-201818016YUAN L, ZENG J, GUO J J, et al. Efficient secretory expression of hyperthermoacidophilic α-amylase PFA in Bacillus subtilis WB600 [J]. Food Science, 2018, 39(18): 100−108.(in Chinese) doi: 10.7506/spkx1002-6630-201818016 [21] GUAN C R, CUI W J, CHENG J T, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis [J]. New Biotechnology, 2016, 33(3): 372−379. doi: 10.1016/j.nbt.2016.01.005 [22] ZHANG W W, YANG M M, YANG Y D, et al. Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening [J]. Applied Microbiology and Biotechnology, 2016, 100(20): 8745−8756. doi: 10.1007/s00253-016-7615-4 [23] BROCKMEIER U, CASPERS M, FREUDL R, et al. Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria [J]. Journal of Molecular Biology, 2006, 362(3): 393−402. doi: 10.1016/j.jmb.2006.07.034 [24] ANNÉ J, ECONOMOU A, BERNAERTS K. Protein secretion in gram-positive bacteria: From multiple pathways to biotechnology [J]. Current Topics in Microbiology and Immunology, 2017, 404: 267−308. [25] 祝发明, 刘辉, 曹要玲, 等. 枯草芽孢杆菌AmyX基因信号肽性能优化研究 [J]. 西北农林科技大学学报(自然科学版), 2006, 34(9):11−16.ZHU F M, LIU H, CAO Y L, et al. Studies on optimizing the signal peptide of AmyX protein from B. subtilis [J]. Journal of Northwest A& F University of Agriculture and Forestry (Natural Science Edition), 2006, 34(9): 11−16.(in Chinese) [26] CASPERS M, BROCKMEIER U, DEGERING C, et al. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide [J]. Applied Microbiology and Biotechnology, 2010, 86(6): 1877−1885. doi: 10.1007/s00253-009-2405-x [27] 叶学军. 地芽孢杆菌CHB1产CGTase的分离纯化及基因的克隆与表达[D]. 福州: 福州大学, 2014.YE X J. Purification, characterization, gene cloning and expression of cyclodextrin glycosyltransferase from Geobacillus caldoxylosilyticus CHB1[D]. Fuzhou: Fuzhou University, 2014. (in Chinese)