Correlation between Amino Acids Content of Fresh Tea Leaves and Nutrients in Soil
-
摘要:
目的 系统分析土壤养分与秋季茶树鲜叶氨基酸含量的相关性,确定适合秋季茶树氨基酸合成和积累的最佳土壤生长环境。 方法 根据变量投影重要性筛选出对秋季茶树鲜叶氨基酸含量具有显著影响的土壤养分指标,运用偏最小二乘回归分析建立线性规划方程组,用LINGGO软件求解得出有利于茶树鲜叶氨基酸合成和积累的土壤养分优化方案。 结果 土壤养分各指标间存在多重共线性,茶树鲜叶氨基酸含量与土壤养分存在相关性;有利于茶树鲜叶氨基酸积累的土壤养分最优值分别为pH4.39~4.85,有机质31.91 g·kg−1(牛磺酸和甘氨酸的最优值为34.6 g·kg−1),全磷0.44~0.52 g·kg−1,全钾20.01 g·kg−1,全氮1.73~2.13 g·kg−1,速效磷178.27~219.77 mg·kg−1,速效钾180.38~196.54 mg·kg−1和速效氮73.22~143.48 mg·kg−1。 结论 不同土壤养分对秋季茶树鲜叶氨基酸组分及含量影响不同,在茶园栽培管理中,多施有机肥、提高土壤速效养分含量、改良酸化土壤、增施氮肥,特别是速效氮,能够提高秋季茶树鲜叶氨基酸含量。 Abstract:Objective Correlation between soil nutrients and amino acids content of fresh tea leaves in autumn was analyzed to optimize the cultivation. Method Based on the projected importance of variables, indices on soil nutrients that significantly affect the amino acids in fresh tea leaves were used in a partial least squares regression analysis to establish linear programming equations. A scheme to optimize the amino acids synthesis and accumulation in tea leaves through soil management was formulated using LINGGO software. Result Correlations between the amino acids in fresh tea leaves and the nutrients in the cultivation soil were obtained. The optimal soil pH for amino acids accumulation in tea leaves was in the range of 4.39 and 4.85, the organic matters at 31.91g·kg−1 (that for taurine and glycine, 34.6 g·kg−1), the total phosphorus 0.44–0.52 g·kg−1, the total potassium at 20.01 g·kg−1, the total nitrogen 1.73–2.13 g·kg−1, the available phosphorus 178.27–219.77 mg·kg−1, the available potassium 180.38–196.54 mg·kg−1, and the available nitrogen 73.22–143.48 mg·kg−1. Conclusion Different soil nutrients affected the composition of tea leave amino acids differently. A plantation managed to use organic fertilizer, mitigate acidification, and apply ample nutrients, especially available nitrogen, in the cultivation soil could significantly increase the amino acids content in tea leaves harvested in autumn. -
表 1 采样点信息
Table 1. Information on sampling site
采样点
Sample site茶庄园
The tea plantation经度
Longitude
(E)纬度
Latitude
(N)海拔
Altitude
/m1 西坪镇珠洋村八马茶场 Bama tea plantation in Zhuyang Village of Xiping Town 117°51′56″ 25°0′13″ 698 2 西坪镇珠洋村八马茶场 Bama tea plantation in Zhuyang Village of Xiping Town 117°52′70″ 25°0′24″ 750 3 西坪镇松岩村魏荫茶园 Weiyin tea plantation in Songyan Village of Xiping Town 127°54′35″ 24°59′59″ 840 4 芦田镇福岭村国营茶场 State-owned tea farm in Fuling Village of Lutian Town 117°53′20″ 25°2′48″ 760 5 芦田镇福岭村国营茶场 State-owned tea farm in Fuling Village of Lutian Town 117°52′53″ 25°2′48″ 750 6 龙涓乡举源村合作社茶园 Cooperative tea plantation in Juyuan Village of Longjuan Town 117°48′55″ 24°57′37″ 810 7 龙涓乡举源村合作社茶园 Cooperative tea plantation in Juyuan Village of Longjuan Town 117°48′55″ 24°57′25″ 810 8 祥华乡福洋村冠和茶园 Guanhe tea plantation in Fuyang Village of Xianghua Town 117°42′17″ 25°14′57″ 1350 9 感德镇霞云村茶园 Tea plantation in Xiayun Village of Gande Town 117°53′4″ 25°19′54″ 635 10 尚卿乡黄岭村国心绿谷茶庄园 Guoxinlvgu tea plantation in Huangling Village of Shangqing Town 117°57′59″ 25°11′41″ 950 11 龙涓乡珠塔村华祥苑生态茶庄园 Huaxiangyuan ecological tea plantation in Zhuta Village of Longjuan Town 117°40′28″ 24°58′50″ 870 表 2 梯度洗脱程序
Table 2. Gradient elution for amino acids separation
时间
Time/min流速
Velocity/
(mL·min−1)流动相A
Mobile phase
A/%流动相B
Mobile phase
B/%0.00 0.70 99.9 0.1 0.54 0.70 99.9 0.1 5.74 0.70 90.9 9.1 7.74 0.70 78.8 21.2 8.04 0.70 40.4 59.6 8.05 0.70 10.0 90.0 8.64 0.70 10.0 90.0 8.73 0.70 99.9 0.1 9.50 0.70 99.9 0.1 表 3 氨基酸组分及含量分析
Table 3. Amino acids and contents
取样点
Sites1 2 3 4 5 6 7 8 9 10 11 牛磺酸 Tau 13.04±0.54de 15.73±0.23a 12.15±0.18 ef 15.03±0.39 ab 15.55±0.61a 14.08±0.17bc 14.23±0.78bc 13.98±0.27cd 11.22±0.61fg 12.71±0.57e 12.07±0.54ef 丝氨酸 Ser 91.16±1.49a 91.16±1.49a 83.98±1.21b 85.29±0.14b 62.39±0.88cd 59.82±2.66de 56.73±0.15fg 59.68±2.09def 60.52±0.89de 56.57±2.06g 53.32±0.94h 精氨酸 Arg 46.43±0.74cd 68.37±1.11a 63.40±0.80b 64.22±0.42b 46.71±0.62cd 44.86±1.99d 42.46±0.07f 44.76±1.57de 45.39±0.66d 42.43±1.54f 39.99±0.71g 甘氨酸 Gly 7.13±0.31f 10.85±0.28c 9.08±0.06d 9.06±0.18d 8.82±0.27de 13.23±0.45a 10.46±0.31c 8.25±0.32e 6.28±0.13g 6.32±0.26g 13.71±0.46a 天冬 氨酸 Asp 20.86±0.03d 30.99±0.51a 27.99±1.25b 29.57±0.97a 21.29±0.36c 20.34±0.90cde 19.49±0.40def 20.29±0.71cde 20.58±0.30 cde 19.23±0.70ef 18.13±0.32f 谷氨酸 Glu 123.88±0.07a 123.43±2.14a 117.01±1.80b 118.97±1.07b 75.82±0.45fg 77.24±0.36def 76.44±0.73ef 79.12±0.66d 76.71±1.29 def 73.56±2.66g 78.51±1.20de 苏氨酸 Thr 39.21±0.45b 40.77±0.43 ab 40.34±0.75 ab 41.35±0.98a 27.52±0.87de 26.65±0.58ef 26.94±0.40ef 27.49±0.47de 25.76±0.92f 26.90±1.04ef 26.81±0.98ef 酪氨酸 Tyr 17.52±0.67cd 19.92±0.17b 15.65±0.03g 21.79±0.52a 15.98±0.58fg 16.26±0.27efg 16.78±0.48de 16.59±0.26ef 12.31±0.27i 13.79±0.09h 11.79±0.28i 脯氨酸 Pro 52.88±0.28a 52.29±1.07 ab 51.04±0.66b 50.93±0.97b 36.32±0.40cd 37.02±0.37c 36.02±0.25cd 34.07±0.48g 34.21±0.72ef 34.47±1.46ef 35.99±0.40cd γ-氨基 丁酸 GABA 29.80±0.43a 29.28±0.60 ab 28.58±0.37b 28.52±0.55b 20.32±0.23c 20.73±0.21c 20.17±0.14c 19.08±0.27d 19.16±0.40d 19.30±0.82d 20.15±0.22c 茶氨酸 Thea 413.56±1.92a 404.98±6.34b 389.10±3.27c 402.22±2.20b 253.52±1.65 defg 259.66±5.28d 251.99±2.91 defgh 252.45±2.74 defg 248.72±5.79 fgh 254.24±3.56defg 250.66±0.92 efgh 缬氨酸 Val 36.12±1.16a 31.17±0.23b 32.79±2.57b 32.72±1.00b 15.18±0.51cde 14.96±0.12 cdef 15.97±0.86c 13.57±0.54efg 12.76±0.24g 14.48±0.48 cdefg 13.94±0.48 defg 赖氨酸 Lys 5.05±0.04de 12.27±0.22a 5.69±0.04d 12.57±0.19a 4.98±0.13de 11.34±0.38b 10.03±0.14c 12.02±0.32ab 4.85±0.68e 4.54±0.19e 4.40±0.16e 组氨酸 His 51.26±0.24b 53.41±0.38b 53.14±0.20b 59.05±0.97a 45.19±1.97c 40.90±0.87d 35.35±3.84e 30.91±0.77f 34.14±0.67ef 40.90±4.40d 34.35±0.54ef 丙氨酸 Ala 7.03±0.22a 5.26±0.12c 3.74±0.03 fg 3.32±0.07h 3.48±0.05h 3.98±0.02f 3.53±0.13gh 4.79±0.10d 4.55±0.12de 2.95±0.05i 3.75±0.17fg 异亮氨酸 Ile 9.50±0.01ab 8.39±0.27c 8.29±0.21c 8.78±0.02 bc 6.65±0.07de 7.14±0.10d 8.25±0.94c 9.94±0.16a 5.92±0.38e 9.98±0.88a 6.78±0.79de 亮氨酸 Leu 11.13±0.47b 12.71±0.64a 11.6±0.56b 12.78±0.27a 9.26±0.48c 9.35±0.02c 1.93±0.25f 6.11±0.03d 8.63±1.02c 2.06±0.02f 8.72±0.78c 苯丙氨酸 Phe 2.72±0.05 bcd 3.28±0.49a 2.78±0.07 bc 3.28±0.17a 2.62±0.06 bcde 2.7±0.10bcd 2.48±0.22cde 3.39±0.16a 2.36±0.07de 3.42±0.31a 2.25±0.05e 氨基酸 总量 Total amino acid 978.27±6.14b 1014.26±8.92 a 956.37±9.86c 999.46±5.9a 671.59±8.99de 680.27±2.35d 649.24±1.59fg 656.5±2.32ef 634.07±8.31gh 637.86±11.18gh 635.33±4.6gh 注:同行数据后不同字母代表氨基酸含量差异显著(P<0.05),数字1-11代表各茶庄园同表1。
Note: Different lowercase letters in the same line represented significant difference; The tea estates represented by numbers 1–11 are the same as Table 1表 4 氨基酸组分与土壤养分的相关性分析
Table 4. Correlation between tea leaf amino acid composition and soil nutrients
氨基酸组分
Amino acidpH 有机质
Organic matter全磷
Total P全钾
Total K全氮
Total N速效磷
Available P速效钾
Available K速效氮
Available N牛磺酸 Tau 0.260 0.263 0.312* 0.014 0.316* 0.179 0.608** 0.206 丝氨酸 Ser 0.235 −0.349* −0.312* 0.038 −0.151 −0.278 −0.096 −0.221 精氨酸 Arg 0.288 −0.403** −0.286 0.022 −0.243 −0.338* 0.061 −0.322* 甘氨酸 Gly 0.000 0.297* 0.194 0.110 −0.179 0.268 0.027 0.137 天冬氨酸 Asp 0.248 −0.374* −0.271 0.043 −0.234 −0.313* 0.083 −0.305* 谷氨酸 Glu 0.224 −0.361* −0.333* −0.014 −0.146 −0.319* −0.102 −0.247 苏氨酸 Thr 0.260 −0.331* −0.352* 0.012 −0.158 −0.333* −0.066 −0.246 酪氨酸 Tyr 0.147 0.165 0.201 0.126 0.273 0.162 0.496** 0.154 脯氨酸 Pro 0.296* −0.329* −0.277 −0.024 −0.173 −0.286 −0.028 −0.261 γ-氨基丁酸 GABA 0.285 −0.317* −0.276 −0.014 −0.173 −0.274 −0.035 −0.253 茶氨酸 Thea 0.262 −0.353* −0.293 −0.020 −0.140 −0.310* −0.031 −0.261 缬氨酸 Val 0.302* −0.323* −0.254 −0.061 −0.114 −0.286 −0.019 −0.245 赖氨酸 Lys −0.175 0.254 0.313* 0.290 0.287 0.318* 0.188 0.471** 组氨酸 His 0.423** −0.252 −0.217 0.118 −0.213 −0.236 0.258 −0.305* 丙氨酸 Ala −0.129 −0.208 −0.204 0.023 0.050 −0.113 −0.507** 0.118 异亮氨酸 Ile 0.117 −0.006 −0.171 −0.036 0.186 −0.240 −0.304* 0.241 亮氨酸 Leu 0.101 −0.323* −0.342* −0.042 −0.211 −0.315* 0.045 −0.337* 苯丙氨酸 Phe 0.246 −0.229 0.017 −0.439** 0.067 −0.326* 0.058 −0.128 氨基酸总量 Total amino acid 0.243 −0.213 0.032 −0.452** 0.102 −0.313* 0.070 −0.119 注:P<0.05,显著相关;P<0.01,极显著相关。
Note: P<0.05, significant correlation; P<0.01, extremely significant correlation.表 5 土壤养分的特征值和条件数
Table 5. Eigenvalue and index of soil nutrients
因子数
Number特征值
Eigen value条件指数
Index方差比例 Variance ratio 截距
InterceptpH 有机质
Organic matter全磷
Total P全钾
Total K全氮
Total N速效磷
Available P速效钾
Available K速效氮
Available N1 7.700 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.524 3.835 0.00 0.00 0.00 0.04 0.01 0.00 0.01 0.01 0.00 3 0.437 4.196 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.10 0.00 4 0.177 6.598 0.00 0.00 0.00 0.00 0.05 0.07 0.00 0.12 0.01 5 0.104 8.625 0.00 0.00 0.00 0.07 0.02 0.03 0.01 0.24 0.00 6 0.033 15.312 0.00 0.00 0.19 0.10 0.23 0.17 0.01 0.02 0.01 7 0.019 20.111 0.01 0.00 0.01 0.31 0.30 0.22 0.47 0.00 0.14 8 0.005 37.881 0.02 0.00 0.68 0.42 0.38 0.48 0.30 0.49 0.83 9 0.001 84.863 0.97 0.99 0.12 0.06 0.00 0.03 0.16 0.01 0.01 表 6 土壤养分对氨基酸含量影响的主要养分和回归方程
Table 6. The major soil nutrient factors on amino acid content and the regression equation
目标函数
Objective function影响因子
Affecting factors回归方程
Regression equationsF 值
F valueP 值
P value牛磺酸 Tau x3、x5、x7 y1=10.144−0.260X3+0.472x5+0.011x7 8.751 .000 丝氨酸 Ser x1、x2、x3、x6 y2=3.48+19.233x1−0.599x2−16.879x3+0.04x6 3.595 .014 精氨酸 Arg x1、x2、x6、x8 y3=20.117+9.359x1+0.507x2−0.003x6+0.058x8 3.130 .025 甘氨酸 Gly x2、x5、x6 y4=8.175+0.132x2+1.417x5+0.001x6 4.434 .009 天冬氨酸 Asp x1、x2、x3、x6、x8 y5=1.87+6.084x1+0.274x2−4.203x3+0.01x6+0.041x8 2.678 .036 谷氨酸 Glu x1、x2、x3、x6 y6=9.257+24.827x1+0.796x2−22.839x3+0.044x6 3.328 .019 苏氨酸 Thr x1、x2、x3、x6 y7=2.524+8.303x1−0.205x2−7.493x3+0.013x6 3.547 .014 酪氨酸 Tyr x5、x7 y8=9.647+0.87x5+0.018x7 7.521 .002 脯氨酸 Pro x1、x2、x3、x6、x8 y9=−12.909+14.774x1−0.571x2−10.363x3+0.026x6+0.104x8 3.352 .013 γ-氨基丁酸 GABA x1、x2、x3、x6、x8 y10=−6.901+8.181x1+0.315x2−5.886x3+0.015x6+0.057x8 3.180 .017 茶氨酸 Thea x1、x2、x3、x6、x8 y11=−135.906+123.014x1+5.403x2−90.362x3+0.207x6+1.032x8 3.203 .016 缬氨酸 Val x1、x2、x3、x6、x8 y12=−42.142+17.122x1−0.676x2−11.145x3+0.028x6+0.13x8 3.176 .017 赖氨酸 Lys x3、x6、x8 y13=4.192+1.394x3−0.001x6+0.051x8 4.295 .010 组氨酸 His x1、x8 y14=−2.372+11.369x1+0.07x8 6.044 .005 丙氨酸 Ala x2、x7 y15=5.521−0.013x2−0.004x7 7.707 .001 异亮氨酸 Ile x6、x7、x8 y16=7.575−0.005x6−0.003x7+0.029x8 7.376 .000 亮氨酸 Leu x2、x3、x6、x7、x8 y17=11.191−0.104x2−4.937x3+0.005x6+0.01x7+0.002x8 2.378 .056 苯丙氨酸 Phe x4、x6 y18=3.42−0.023x4−0.001x6 5.660 .007 氨基酸总量 Total amino acid x2、x6、x8 y19=911.552+6.235x2−0.119x6+0.709x8 3.016 .029 表 7 土壤养分优化方案
Table 7. Scheme for soil nutrient optimization
氨基酸组分
Amino acidpH 有机质
Organic matter/
(g·kg−1)全磷
Total P/
(g·kg−1)全钾
Total K/
(g·kg−1)全氮
Total N/
(g·kg−1)速效磷
Available P/
(mg·kg−1)速效钾
Available K/
(mg·kg−1)速效氮
Available N/
(mg·kg−1)优化值
Objective value/
(mg·hg−1)牛磺酸 Tau 4.53 34.60 0.44 20.01 2.13 219.77 187.81 103.81 13.10 丝氨酸 Ser 4.85 31.91 0.44 20.01 1.73 219.77 196.54 80.81 79.01 精氨酸 Arg 4.85 31.91 0.44 20.01 1.85 178.27 188.55 143.48 57.12 甘氨酸 Gly 4.53 34.60 0.44 20.01 1.73 219.77 187.81 103.81 10.51 天冬氨酸 Asp 4.85 31.91 0.44 20.01 1.73 219.77 196.54 143.48 28.87 谷氨酸 Glu 4.85 31.91 0.44 20.01 1.88 219.77 180.38 80.18 103.89 苏氨酸 Thr 4.85 31.91 0.44 20.01 1.73 219.77 196.54 80.81 35.81 酪氨酸 Tyr 4.39 31.91 0.52 20.01 1.88 219.77 196.54 80.81 10.14 脯氨酸 Pro 4.85 31.91 0.44 20.01 1.73 219.77 196.54 143.48 56.60 γ-氨基丁酸 GABA 4.85 31.91 0.44 20.01 1.88 219.77 180.38 143.48 31.61 茶氨酸 Thea 4.85 31.91 0.44 20.01 1.73 219.77 196.54 143.48 442.11 缬氨酸 Val 4.85 31.91 0.44 20.01 1.88 219.77 180.38 143.48 39.23 赖氨酸 Lys 4.77 31.91 0.50 20.01 1.88 219.77 196.54 143.48 11.98 组氨酸 His 4.85 31.91 0.45 20.01 1.85 178.27 180.38 73.22 47.64 丙氨酸 Ala 4.41 31.91 0.45 20.01 1.85 178.27 180.38 73.22 4.38 异亮氨酸 Ile 4.77 31.91 0.44 20.01 1.85 178.27 188.55 143.48 10.28 亮氨酸 Leu 4.39 31.91 0.44 20.01 1.73 219.77 196.54 80.81 8.60 苯丙氨酸 Phe 4.41 31.91 0.48 20.01 1.73 178.27 192.32 73.22 3.42 氨基酸总量 Total amino acid 4.77 31.91 0.46 20.01 1.85 178.27 196.54 143.48 793.11 -
[1] 曾凡琳, 温美佳, 王欢, 等. 道地药材气候生态位研究 [J]. 时珍国医国药, 2016, 27(5):1227−1230.ZENG F L, WEN M J, WANG H, et al. Study on Climatic Niches of genuine medicinal materials [J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(5): 1227−1230.(in Chinese) [2] VAUDOUR E. The quality of grapes and wine in relation to geography: Notions of terroir at various scales [J]. Journal of Wine Research, 2002, 13(2): 117−141. doi: 10.1080/0957126022000017981 [3] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. [4] 陈思肜, 赵峰, 王淑燕, 等. 不同等级白牡丹茶游离氨基酸构成分析 [J]. 福建农业学报, 2019, 34(8):965−973.CHEN S R, ZHAO F, WANG S Y, et al. Amino acids in white peony teas of different grades [J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 965−973.(in Chinese) [5] 陈丹, 叶小辉, 俞滢, 等. 不同等级云南红碎茶的氨基酸组分分析 [J]. 福建茶叶, 2014, 36(4):24−26. doi: 10.3969/j.issn.1005-2291.2014.04.009CHEN D, YE X H, YU Y, et al. Analysis of amino acid composition of different grades of Yunnan black broken Tea [J]. Tea in Fujian, 2014, 36(4): 24−26.(in Chinese) doi: 10.3969/j.issn.1005-2291.2014.04.009 [6] RUAN J Y, MA L F, SHI Y Z. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China [J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 450−459. doi: 10.1002/jpln.201200175 [7] 杨亦扬. 氮素对茶树叶片品质成分影响机理研究[D]. 南京: 南京农业大学, 2011.YANG Y Y. Quality-related constituents in tea[Camellia sinensis (L. ) O. kuntze]leaves as affected by nitrogen[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) [8] CHEN P A, LIN S Y, LIU C F, et al. Correlation between nitrogen application to tea flushes and quality of green and black teas [J]. Scientia Horticulturae, 2015, 181: 102−107. doi: 10.1016/j.scienta.2014.10.050 [9] 苏有健, 廖万有, 丁勇, 等. 不同氮营养水平对茶叶产量和品质的影响 [J]. 植物营养与肥料学报, 2011, 17(6):1430−1436. doi: 10.11674/zwyf.2011.0538SU Y J, LIAO W Y, DING Y, et al. Effects of nitrogen fertilization on yield and quality of tea [J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1430−1436.(in Chinese) doi: 10.11674/zwyf.2011.0538 [10] 罗凡, 龚雪蛟, 张厅, 等. 氮磷钾对春茶光合生理及氨基酸组分的影响 [J]. 植物营养与肥料学报, 2015, 21(1):147−155. doi: 10.11674/zwyf.2015.0116LUO F, GONG X J, ZHANG T, et al. Effects of nitrogen, phosphorus and potassium on photo-biological characteristics and amino acid components of tea plants in spring [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 147−155.(in Chinese) doi: 10.11674/zwyf.2015.0116 [11] 林郑和, 陈立松, 陈荣冰, 等. 缺磷对茶树幼苗养分吸收的影响 [J]. 茶叶科学, 2009, 29(4):295−300. doi: 10.3969/j.issn.1000-369X.2009.04.008LIN Z H, CHEN L S, CHEN R B, et al. Effects of phosphorus deficiency on nutrient absorption of young tea bushes [J]. Journal of Tea Science, 2009, 29(4): 295−300.(in Chinese) doi: 10.3969/j.issn.1000-369X.2009.04.008 [12] LIN Z H, QI Y P, CHEN R B, et al. Effects of phosphorus supply on the quality of green tea [J]. Food Chemistry, 2012, 130(4): 908−914. doi: 10.1016/j.foodchem.2011.08.008 [13] RUAN J, HAERDTER R, GERENDÁS J. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea[Camellia sinensis (L. ) O. Kuntze]plants [J]. Plant Biology, 2010, 12(5): 724−734. doi: 10.1111/j.1438-8677.2009.00288.x [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [15] 周志, 薛俊鹏, 卓座品, 等. 一方水土养一方茶: 产地影响武夷岩茶品质的代谢组基础 [J]. 中国科学:生命科学, 2019, 49(8):1013−1023. doi: 10.1360/SSV-2019-0026ZHOU Z, XUE J P, ZHUO Z P, et al. Unique region produces special tea: Metabolomic basis of the influence of production region on the quality of Wuyi Rock Tea [J]. Scientia Sinica (Vitae), 2019, 49(8): 1013−1023.(in Chinese) doi: 10.1360/SSV-2019-0026 [16] 王协书. 竹溪龙峰茶品质形成与生态因子的关系[D]. 武汉: 华中农业大学, 2008.WANG X S. Effects of ecological factors on quality of dragon peak FamousTea in the tea region of Zhuxi[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese) [17] 李方正, 解爽, 李雄. 基于PLSR模型的北京市中心城绿色空间演变驱动机制研究(1992—2016年) [J]. 北京林业大学学报, 2019, 41(4):116−126.LI F Z, XIE S, LI X. Evolutionary driving mechanism of greenspace in central Beijing City based on the PLSR model [J]. Journal of Beijing Forestry University, 2019, 41(4): 116−126.(in Chinese) [18] 王海斌, 陈晓婷, 丁力, 等. 福建省安溪县茶园土壤酸化对茶树产量及品质的影响 [J]. 应用与环境生物学报, 2018, 24(6):1398−1403.WANG H B, CHEN X T, DING L, et al. Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi County, Fujian Province [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1398−1403.(in Chinese) [19] MEHRA A, BAKER C L. Leaching and bioavailability of aluminium, copper and manganese from tea (Camellia sinensis) [J]. Food Chemistry, 2007, 100(4): 1456−1463. doi: 10.1016/j.foodchem.2005.11.038 [20] NEJATOLAHI M, MORTAZAVI S, ILDOROMI A. Levels of Cu, Zn, Pb, and Cd in the leaves of the tea plant (Camellia sinensis) and in the soil of Gilan and Mazandaran farms of Iran [J]. Journal of Food Measurement and Characterization, 2014, 8(4): 277−282. doi: 10.1007/s11694-014-9186-3 [21] 王正银. 作物施肥学 [M]. 重庆: 西南师范大学出版社, 1981: 64.