Effects of Laser and LED on Growth, Photosynthesis, Physiological and Biochemical Characteristics of Solanum lycopersicum Seedlings
-
摘要:
目的 探索激光和LED补光对番茄幼苗生长、光合作用及生理生化特性的影响,为提高番茄幼苗品质提供科学依据。 方法 先采用CIRAS-3光合测定系统测定苗龄30d的番茄(Solanum lycopersicum)幼苗在3种单色激光和LED光(2红1蓝)辐照下叶片光合作用的光响应曲线,再以色温6000 K LED白光补少量蓝光和光合能力较强的红光进行番茄补光育苗试验,以LED白光育苗为对照。 结果 峰值波长650 nm红光辐照番茄幼苗光合能力最强(光合光量子通量密度PPFD<400 μmol·m−2·s−1时),峰值波长650 nm和450 nm激光辐照番茄幼苗的光合能力均强于相同波长LED光辐照;白光同时补650 nm和450 nm激光处理的幼苗所有生长指标、最大净光合速率和水分利用率均显著大于补LED光处理(P <0.05),且这些指标均大于对照;所有试验组的光补偿点相同,白光同时补红蓝激光处理光饱和点最低;白光补激光比补LED光更显著地提高叶绿素a、类胡萝卜素、丙二醛(MDA)含量和过氧化物酶(POD)活性,但补光对超氧化物歧化酶(SOD)活性无显著影响。 结论 白光补激光特别是同时补650 nm和450 nm激光处理比补LED光对促进番茄幼苗生长、提高光合能力和抗氧化能力效果更佳。 Abstract:Objective Effects of laser and light-emitting diode (LED) exposures on growth, photosynthesis, and physiological and biochemical characteristics of Solanum lycopersicum seedlings were investigated. Method A CIRAS-3 system was used to determine the photosynthetic response of 30-d-old tomato seedlings exposed to 2 red and 1 blue monochromatic laser or LED. Then, using a color temperature of 6 000 K white LED as control the seedling growth under the LED white light supplemented with a small amount of blue light along with the photosynthesis-stimulating red light as treatments was compared. Result The photosynthetic capacity of the seedlings exposed to 650nm red light was greater than the other wavelengths of red light when the photosynthetic quantum flux density PPFD was below 400 μmol·m−2·s−1. The capacities produced by laser of 650 nm and 450 nm were greater than LED of same wavelengths. The growth indicators, maximum net photosynthetic rate, and water use efficiency of the seedlings exposed to either laser or LED was greater than control, but laser significantly higher than LED (p<0.05). All treatments had a same light compensation point, but the seedlings grown under white LED supplemented with both 650 nm and 450 nm laser had the lowest light saturation point. In addition, laser was significantly more effective than LED in increasing the contents of chlorophyll a, carotenoid, and malondialdehyde (MDA) and the activity of peroxidase (POD), although it did not affect the superoxide dismutase (SOD) activity. Conclusion The white LED supplemented with laser, especially both 650nm and 450nm, significantly promoted the growth, photosynthetic capacity, and antioxidant activities of the tomato seedlings in comparison to LED supplementation. -
Key words:
- Tomato /
- laser /
- LED /
- supplementary light /
- photosynthesis /
- physiology and biochemistry
-
表 1 激光和LED补光栽培试验光源设计
Table 1. Design of supplementary laser and LED light for tomato cultivation experiment
处理
Treatment光量子通量密度 PPFD/(μmol·m−2·s−1) 激光
LaserLED 白光
White lightR B R B 色温
Color temperature
6000 K对照 − − − − 88 T1 − − 12 6 70 T2 12 6 − − 70 T3 18 − − − 70 注:表中“−”表示未补同一列的单色光。
Note: "−" in the table indicates that monochromatic light at the same column was not added.表 2 西红柿幼苗的生长指标
Table 2. Growth indicators of tomato seedlings
处理
Treatment株高
Plant height/
cm茎直径
Stem diameter/
mm叶面积
Leaf area/
cm2地上部鲜重
Ground fresh
weight/g地下部鲜重
Underground fresh
weight/g地上部干重
Ground dry
weight/g地下部干重
Underground dry
weight/g壮苗指数
Strong seedling
index/mg根冠比
Root Shoot
ratio对照 17.2±0.68b 2.9±0.12c 97.8±4.8a 2.8±0.38b 0.2±0.08b 0.21±0.049b 0.02±0.006b 3.7±0.21c 0.08±0.01b T1 16.1±0.78c 3.3±0.15b 95.9±2.5ab 3.1±0.35b 0.2±0.06b 0.25±0.055ab 0.02±0.006b 5.5±0.35b 0.07±0 b T2 19.7±1.95b 4.3±0.1a 105.8±2.9a 4.0±0.22a 0.5±0.06a 0.35±0.028a 0.05±0.013a 8.8±0.55a 0.13±0.01a T3 28.7±2.15a 3.1±0.04b 85.5±3.8b 4.4±0.39a 0.4±0.10a 0.34±0.076a 0.03±0.011ab 4.0±0.25c 0.09±0.01b 注:同一列不同小写字母表示不同实验组间存在显著差异(P<0.05)。
Note: The lowercase letters in the same row indicate significant differences among different experience groups (P<0.05). -
[1] PASHKOVSKIY P P, SOSHINKOVA T N, KOROLKOVA D V, et al. The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells [J]. Photosynthesis Research, 2018, 136(2): 199−214. doi: 10.1007/s11120-017-0459-7 [2] YANG F, FENG L Y, LIU Q L, et al. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition [J]. Environmental and Experimental Botany, 2018, 150: 79−87. doi: 10.1016/j.envexpbot.2018.03.008 [3] 郭阿瑾, 杨凤玺, 王亚琴, 等. 不同光质LED对竹叶兰酚类物质及抗氧化性的影响 [J]. 热带作物学报, 2018, 39(7):1318−1323. doi: 10.3969/j.issn.1000-2561.2018.07.009GUO A J, YANG F X, WANG Y Q, et al. Effect of different LED light qualities on phenolic substances and oxygen metabolism of Arundina graminifolia [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1318−1323.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.07.009 [4] 郑洁, 胡美君, 郭延平. 光质对植物光合作用的调控及其机理 [J]. 应用生态学报, 2008, 19(7):1619−1624.ZHENG J, HU M J, GUO Y P. Regulation of photosynthesis by light quality and its mechanism in plants [J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1619−1624.(in Chinese) [5] 刘庆, 连海峰, 刘世琦, 等. 不同光质LED光源对草莓光合特性、产量及品质的影响 [J]. 应用生态学报, 2015, 26(6):1743−1750.LIU Q, LIAN H F, LIU S Q, et al. Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry [J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1743−1750.(in Chinese) [6] GALVÃO V C, FANKHAUSER C. Sensing the light environment in plants: Photoreceptors and early signaling steps [J]. Current Opinion in Neurobiology, 2015, 34: 46−53. doi: 10.1016/j.conb.2015.01.013 [7] AGARWAL A, DUTTA GUPTA S, BARMAN M, et al. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L. ) growth in response to blue and red photon flux ratios [J]. Environmental and Experimental Botany, 2018, 156: 170−182. doi: 10.1016/j.envexpbot.2018.09.009 [8] 林碧英, 张瑜, 林义章. 不同光质对豇豆幼苗光合特性和若干生理生化指标的影响 [J]. 热带作物学报, 2011, 32(2):235−239. doi: 10.3969/j.issn.1000-2561.2011.02.010LIN B Y, ZHANG Y, LIN Y Z. Effects of light quality on photosynthetic characteristics and several physiological and biochemical indices of cowpea seedings [J]. Chinese Journal of Tropical Crops, 2011, 32(2): 235−239.(in Chinese) doi: 10.3969/j.issn.1000-2561.2011.02.010 [9] 张松勇. 不同光质对紫苏光合特性的影响 [J]. 热带作物学报, 2017, 38(3):444−449.ZHANG S Y. Effects of different LED light qualities on photosynthetic characteristics of basil [J]. Chinese Journal of Tropical Crops, 2017, 38(3): 444−449.(in Chinese) [10] CHEN M X, ZENG X P, LIU Y C, et al. An orthogonal design of light factors to optimize growth, photosynthetic capability and metabolite accumulation of Anoectochilus roxburghii (Wall. ) Lindl [J]. Scientia Horticulturae, 2021, 288: 110272. doi: 10.1016/j.scienta.2021.110272 [11] 杨其长, 徐志刚, 陈弘达, 等. LED光源在现代农业的应用原理与技术进展 [J]. 中国农业科技导报, 2011, 13(5):37−43. doi: 10.3969/j.issn.1008-0864.2011.05.06YANG Q C, XU Z G, CHEN H D, et al. Application principle and technology progress in using light-emitting diode(LED) light sources in modern agriculture [J]. Journal of Agricultural Science and Technology, 2011, 13(5): 37−43.(in Chinese) doi: 10.3969/j.issn.1008-0864.2011.05.06 [12] 李杰, 王再花, 刘海林, 等. 不同光质的LED对2种金线莲组培苗增殖、生根及生长的影响 [J]. 热带作物学报, 2017, 38(9):1666−1670. doi: 10.3969/j.issn.1000-2561.2017.09.014LI J, WANG Z H, LIU H L, et al. Effect of LED in different light qualities on propagation, rooting and growth of Anoectochilus roxburghii plantlets [J]. Chinese Journal of Tropical Crops, 2017, 38(9): 1666−1670.(in Chinese) doi: 10.3969/j.issn.1000-2561.2017.09.014 [13] 刘福长, 杨玉凯, 林碧英. 不同光质夜间补光对番茄幼苗耐冷性的影响 [J]. 福建农业学报, 2020, 35(11):1222−1227.LIU F C, YANG Y K, LIN B Y. Effect of nighttime exposure to light from color lamps on cold tolerance of tomato seedlings [J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1222−1227.(in Chinese) [14] CHEN X D, CHU Q Q, LAN Y T, et al. Research and application of laser light device for plant growth [J]. Nanoscience and Nanotechnology Letters, 2017, 9(12): 2095−2100. doi: 10.1166/nnl.2017.2583 [15] LI Y F, GAO L M, HAN R. He–Ne laser illumination ameliorates photochemical impairment in ultraviolet-B stressed-wheat seedlings via detoxifying ROS cytotoxicity [J]. Russian Journal of Plant Physiology, 2017, 64(5): 766−775. doi: 10.1134/S1021443717050041 [16] 张美萍, 梁志英, 韩榕, 等. He-Ne激光和增强UV-B辐射对水稻幼苗光合作用的影响 [J]. 中国激光, 2014, 41(8):114−119.ZHANG M P, LIANG Z Y, HAN R, et al. Effects of He-Ne laser and enhanced UV-B radiation on the photosynthesis on rice flags [J]. Chinese Journal of Lasers, 2014, 41(8): 114−119.(in Chinese) [17] 高晓玲, 何应森, 徐晓燕. 激光与增强的紫外-B辐射对花生幼苗光合作用的影响 [J]. 贵州农业科学, 2013, 41(7):36−38. doi: 10.3969/j.issn.1001-3601.2013.07.011GAO X L, HE Y S, XU X Y. Effects of laser and enhanced UV-B radiation on photosynthesis of peanut seedlings [J]. Guizhou Agricultural Sciences, 2013, 41(7): 36−38.(in Chinese) doi: 10.3969/j.issn.1001-3601.2013.07.011 [18] 黄祥英, 方玉宏. 基于激光共聚焦扫描显微技术分析激光对扁藻的影响 [J]. 激光生物学报, 2019, 28(2):131−135. doi: 10.3969/j.issn.1007-7146.2019.02.005HUANG X Y, FANG Y H. Analysis of laser irradiation effect on Platymonas subcordiformis using laser confocal scanning microscopy [J]. Acta Laser Biology Sinica, 2019, 28(2): 131−135.(in Chinese) doi: 10.3969/j.issn.1007-7146.2019.02.005 [19] ARNON D I, MCSWAIN B D, TSUJIMOTO H Y, et al. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1974, 357(2): 231−245. doi: 10.1016/0005-2728(74)90063-2 [20] MA Z Q, LI S S, ZHANG M J, et al. Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilus plants [J]. HortScience, 2010, 45(6): 863−867. doi: 10.21273/HORTSCI.45.6.863 [21] LI Q S, DENG M, XIONG Y S, et al. Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis [J]. The Scientific World Journal, 2014, 2014: 347461. [22] HALL D O, RAO K K. 光合作用[M]. 2版. 北京: 科学出版社, 1984: 100. [23] 高丽美, 李永锋, 韩榕. He-Ne激光对增强UV-B辐射后小麦幼苗光合作用的影响 [J]. 广西植物, 2011, 31(1):117−123. doi: 10.3969/j.issn.1000-3142.2011.01.024GAO L M, LI Y F, HAN R. Effects of He-Ne laser on photosynthesis of wheat seedlings exposed to enhanced UV-B radiation [J]. Guihaia, 2011, 31(1): 117−123.(in Chinese) doi: 10.3969/j.issn.1000-3142.2011.01.024 [24] 杨玉珍, 曾佑炜. 植物生理学[M]. 2版. 北京: 化学工业出版社, 2020: 76-77. [25] DYMOVA O V, GOLOVKO T K. Photosynthetic pigments in native plants of the taiga zone at the European northeast Russia [J]. Russian Journal of Plant Physiology, 2019, 66(3): 384−392. doi: 10.1134/S1021443719030038 [26] 杨喜珍, 杨利, 覃亚, 等. PEG-8000模拟干旱胁迫对马铃薯组培苗叶绿素和类胡萝卜素含量的影响 [J]. 中国马铃薯, 2019, 33(4):193−202. doi: 10.3969/j.issn.1672-3635.2019.04.001YANG X Z, YANG L, QIN Y, et al. Effects of PEG-8000 stres on contents of chlorophyll and carotenoid of potato plantlets in vitro [J]. Chinese Potato Journal, 2019, 33(4): 193−202.(in Chinese) doi: 10.3969/j.issn.1672-3635.2019.04.001 [27] 金丽虹. 氩离子激光辐照对大豆幼苗生物学性能影响的研究: 生理生化指标、异黄酮代谢、抗氧化性[D]. 长春: 长春理工大学, 2011.JIN L H. Some biological effects on soybean seedlings by ar+ laser irradiation—physiological and biochemical index, isoflavone methabolism and antioxidation[D]. Changchun: Changchun University of Science and Technology, 2011. (in Chinese) [28] 秦健, 刘洋, 方升佐, 等. 光质和光强对青钱柳生长和抗氧化酶活性的影响 [J]. 南京林业大学学报(自然科学版), 2017, 41(4):13−18.QIN J, LIU Y, FANG S Z, et al. Effects of light quality and intensity on growth and antioxidative activities of Cyclocarya paliurus seedlings [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4): 13−18.(in Chinese) [29] 芦站根, 赵昌琼, 周文杰, 等. 光强对曼地亚红豆杉膜代谢及保护系统的影响 [J]. 重庆大学学报(自然科学版), 2003, 26(8):89−92.LU Z G, ZHAO C Q, ZHOU W J, et al. Effect of different light intensity on metabolizing of membrane and inner protective system of Taxus media cv. hicksii leaves [J]. Journal of Chongqing University (Natural Science Edition), 2003, 26(8): 89−92.(in Chinese) [30] 彭亮, 赵停, 杨冰月, 等. 不同光质光强对远志生长和相关酶活性及成分的影响 [J]. 中草药, 2018, 49(21):5004−5009. doi: 10.7501/j.issn.0253-2670.2018.21.008PENG L, ZHAO T, YANG B Y, et al. Effects of light quality and intensity on growth, related enzymes activity, and components of Polygala tenuifolia [J]. Chinese Traditional and Herbal Drugs, 2018, 49(21): 5004−5009.(in Chinese) doi: 10.7501/j.issn.0253-2670.2018.21.008