Effects of Phosphorus Fertilizations on Growth and Root Mycorrhizal Infection of Tomato Seedlings Intercropped with Potato-onion
-
摘要:
目的 探究不同施磷水平对分蘖洋葱伴生番茄的幼苗生长及根系菌根侵染的作用,明确适宜磷肥施用量进而最大程度发挥植物种间正相互作用,有利于维持农业生态系统的稳定性与生产力。 方法 以番茄(Solanum lycopersicum L.)和分蘖洋葱(Allium cepa L. var. aggregatum G. Don)为试验材料,通过番茄单作(T)和分蘖洋葱伴生番茄(TO)盆栽试验,研究其在0 mg·kg−1 磷肥(P0)、250 mg·kg−1 磷肥(P250)、500 mg·kg−1 磷肥(P500)、1000 mg·kg−1 磷肥(P1000)施磷水平下,番茄植株生物量大小、番茄根系菌根侵染率、番茄植株养分浓度及土壤养分含量的变化情况。 结果 与P0相比,P250、P500、P1000施磷水平下,单作番茄全株干重分别增加了43.18%、47.73%和47.02%,伴生番茄全株干重分别增加了45.93%、50.36%和40.89%,且各施磷水平下,伴生番茄全株干重与单作番茄相比分别增长了8.8%(P0)、13.6%(P250)、15.2%(P500)及5.6%(P1000)。同时,施磷水平为P250、P500、P1000时,番茄植株生物量、植株养分浓度、植株养分吸收量、土壤有效磷及速效钾含量均显著高于施磷水平P0,且番茄植株生物量与植株氮磷钾养分和土壤有效磷含量间呈显著正相关。另外,施磷水平为P500时,番茄根系菌根侵染率和植株生物量最高,均显著高于其他施磷水平。 结论 磷营养在番茄和分蘖洋葱种间正相互作用中发挥了重要作用,其中施磷水平为P500时,能最大程度发挥番茄和分蘖洋葱间的正相互作用,增加番茄根系菌根侵染率,协助番茄根系从土壤中获取养分,进而促进番茄的生长。 Abstract:Objective Roles of phosphorus application on growth and root mycorrhizal infection rate of tomato seedlings intercropped with potato-onion were investigated to optimize the fertilization for sustainable crop production and agricultural ecosystem. Methods Tomato (Solanum lycopersicum L.) seedlings were either grown under monoculture (T) or intercropping with potato-onion (Allium cepa L. var. aggregatum G. Don) (TO) in a pot experiment. Biomass, root mycorrhizal infection rate, and nutrient concentrations of the tomato plants, as well as the nutrient contents in the soil treated with varied phosphorus applications, i.e., 0 P (P0), 250mg P·kg−1 (P250), 500mg P·kg−1 (P500), and 1,000mg P·kg−1 (P1000), were monitored. Results Compared to P0, the dry weight of the monocultured tomato plant under P250 increased by 43.18%, under P500 by 47.73%, and under P1000 by 47.02%, while the intercropping under P250 resulted in an increase of 45.93%, under P500 50.36%, and under P1000 40.89%. At same P application level from T to TO, the tomato plant weight increased 8.8% under P0, 13.6% under P250, 15.2% under P500, and 5.6% under P1000. P250, P500, and P1000 enhanced the biomass production as well as the nutrient concentration and uptake of the tomato plants. The applications also increased the available P and K in soil with a significant positive correlation. At P500, the greatest and significantly higher than other treatments on plant biomass and root mycorrhizal infection rates of the tomato plants were observed. Conclusion P played an important role in the interaction between tomato and potato-onion. At the 500 mg·kg−1 application level, P maximized the interaction and enhanced the tomato root mycorrhizal infection which facilitated transfer of nutrients from soil to plant promoting the growth. -
Key words:
- Tomato /
- potato-onion /
- phosphorus level /
- arbuscular mycorrhizal fungi /
- mycorrhizal infection rates.
-
图 1 不同施磷水平对分蘖洋葱伴生番茄幼苗鲜干重的影响
注:0 mg·kg−1 磷肥 (P0)、250 mg·kg−1 磷肥 (P250)、500 mg·kg−1 磷肥 (P500)、1000 mg·kg−1 磷肥(P1000);不同施磷水平下,单作与间作的显著差异用‘*’表示,同一种种植模式下不同施磷水平间显著差异用‘小写字母’表示(P<0.05);白色柱表示番茄单作,灰色柱表示分蘖洋葱伴生番茄;下图同。
Figure 1. Effects of P applications on fresh and dry weights of tomato seedings intercropped with potato-onion
Note: 0 mg·kg−1 phosphorus fertilizer(P0), 250 mg·kg−1 phosphorus fertilizer(P250), 500 mg·kg−1 phosphorus fertilizer(P500), 1000 mg·kg−1 phosphorus fertilizer(P1000); Significant differences between monoculture and intercropping at the same phosphorus level are indicated by ‘*’, and significant differences among different phosphorus application levels under the same cropping system are indicated by ‘lowercase letters’(P<0.05). The white column represents monoculture tomato and the gray column represents tomato intercropped by potato-onion. The same as below.
表 1 番茄植株生物量与菌根侵染率、植株养分和土壤养分之间的相关系数
Table 1. Correlation coefficients between biomass and mycorrhizal infection rates of tomato plants and nutrient contents in soil
指标
Indicators单作番茄生物量
Tomato biomass of monoculture伴生番茄生物量
Tomato biomass of intercropping鲜重
Fresh weight干重
Dry weight鲜重
Fresh weight干重
Dry weight全株
Whole
plant地上部
Aboveground地下部
Under-
ground全株
Whole
plant地上部
Aboveground地下部
Under-
ground全株
Whole
plant地上部
Aboveground地下部
Under-
ground全株
Whole
plant地上部
Aboveground地下部
Under-
ground植株氮浓度
Plant N
concentration0.974** 0.973** 0.914** 0.889** 0.953** 0.885** 0.976** 0.981** 0.951** 0.987** 0.943** 0.909** 植株磷浓度
Plant P
concentration0.734** 0.722** 0.741** 0.608* 0.658* 0.691* 0.864** 0.791** 0.849** 0.824** 0.683* 0.925** 植株钾浓度
Plant K
concentration0.973** 0.978** 0.911** 0.875** 0.966** 0.891** 0.944** 0.977** 0.902** 0.971** 0.950** 0.825** 丛枝丰度
Arbuscular
abundance0.499 0.438 0.693* 0.529* 0.508* 0.725** 0.668* 0.656* 0.798** 0.753** 0.772** 0.709** 囊泡丰度
Vesicle
abundance0.448 0.381 0.655* 0.462 0.439 0.663* 0.754** 0.726** 0.861** 0.822** 0.843** 0.773** 菌丝侵染率
Hyphal infection
rates−0.083 −0.149 0.157 0.008 −0.059 0.195 0.472 0.484* 0.602* 0.578* 0.641* 0.474 土壤铵态氮
Soil ammonium
nitrogen0.177 0.193 0.126 0.076 0.091 0.082 0.695* 0.604* 0.655* 0.624* 0.465 0.775** 土壤硝态氮
Soil nitrate
nitrogen0.580* 0.582* 0.531* 0.454 0.498 0.470 0.689* 0.563* 0.688* 0.614* 0.441 0.822** 土壤有效磷
Soil available
phosphorus0.699* 0.702** 0.650* 0.580* 0.624* 0.600* 0.750** 0.638* 0.735** 0.679* 0.519* 0.850** 土壤速效钾
Soil available
potassium0.613* 0.632* 0.521* 0.482 0.541* 0.468 0.695* 0.597* 0.652* 0.614* 0.452 0.776** 注:**:在 0.01 水平显著;*:在 0.05 水平显著
Note: **: significant at 0.01 level; *: significant at 0.05 level. -
[1] PARK E J, JEKNIĆ Z, SAKAMOTO A, et al. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage [J]. The Plant Journal, 2004, 40(4): 474−487. doi: 10.1111/j.1365-313X.2004.02237.x [2] ZUSHI K, KAJIWARA S, MATSUZOE N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit [J]. Scientia Horticulturae, 2012, 148: 39−46. doi: 10.1016/j.scienta.2012.09.022 [3] LIU T J, CHENG Z H, MENG H W, et al. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation [J]. Scientia Horticulturae, 2014, 170: 159−168. doi: 10.1016/j.scienta.2014.02.039 [4] LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture [J]. New Phytologist, 2014, 203(1): 63−69. doi: 10.1111/nph.12778 [5] LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196. doi: 10.1073/pnas.0704591104 [6] LAMBERS H, CLEMENTS J C, NELSON M N. How a phosphorus-acquisition strategy based on carboxylate exudation Powers the success and agronomic potential of lupines (Lupinus, Fabaceae) [J]. American Journal of Botany, 2013, 100(2): 263−288. doi: 10.3732/ajb.1200474 [7] CHEN B D, LI X J, XU T L, et al. Advances in the biogeography of arbuscular mycorrhizal fungi [J]. Acta Ecologica Sinica, 2018, 38(4): 1167−1175. [8] GAO D M, PAN X J, ZHOU X G, et al. Phosphorus fertilization and intercropping interactively affect tomato and potato onion growth and rhizosphere arbuscular mycorrhizal fungal community [J]. Archives of Agronomy and Soil Science, 2021, 67(7): 919−933. doi: 10.1080/03650340.2020.1768530 [9] REN L X, LOU Y S, ZHANG N, et al. Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants [J]. Biology and Fertility of Soils, 2013, 49(1): 3−11. doi: 10.1007/s00374-012-0689-y [10] WALDER F, NIEMANN H, NATARAJAN M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade [J]. Plant Physiology, 2012, 159(2): 789−797. doi: 10.1104/pp.112.195727 [11] 周佳琦, 张钰, 张梦燚, 等. 丛枝菌根真菌对基质栽培叶用莴苣和菠菜氮肥用量的减施效果 [J]. 中国蔬菜, 2021(10):57−65.ZHOU J Q, ZHANG Y, ZHANG M Y, et al. Effect of arbuscular mycorrhizal fungi on reducing nitrogen fertilizer dosage in substrate cultivation of lettuce and spinach [J]. China Vegetables, 2021(10): 57−65.(in Chinese) [12] TIAN X L, WANG C B, BAO X G, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. Plant and Soil, 2019, 436(1/2): 173−192. [13] CHIFFLOT V, RIVEST D, OLIVIER A, et al. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems [J]. Agriculture, Ecosystems & Environment, 2009, 131(1/2): 32−39. [14] 李灵芝, 行园园, 盖京苹, 等. 不同氮肥及有机肥投入对设施番茄菜地AM真菌侵染势和空间分布的影响 [J]. 中国蔬菜, 2015(4):49−53. doi: 10.3969/j.issn.1000-6346.2015.04.014LI L Z, XING Y Y, GAI J P, et al. Effects of different nitrogen and organic manure application on infection potential and spatial distribution of arbuscular mycorrhizal fungi in greenhouse tomato cropping system [J]. China Vegetables, 2015(4): 49−53.(in Chinese) doi: 10.3969/j.issn.1000-6346.2015.04.014 [15] 陈远学, 李汉邯, 周涛, 等. 施磷对间套作玉米叶面积指数、干物质积累分配及磷肥利用效率的影响 [J]. 应用生态学报, 2013, 24(10):2799−2806.CHEN Y X, LI H H, ZHOU T, et al. Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2799−2806.(in Chinese) [16] 付彦祥, 李乃荟, 刘佳遥, 等. 伴生分蘖洋葱对番茄根际微生物群落结构的影响 [J]. 中国蔬菜, 2020(6):49−57.FU Y X, LI N H, LIU J Y, et al. Effects of concomitant tillering onion on microbial community structure in tomato rhizosphere soil [J]. China Vegetables, 2020(6): 49−57.(in Chinese) [17] TRINGOVSKA I, YANKOVA V, MARKOVA D, et al. Effect of companion plants on tomato greenhouse production [J]. Scientia Horticulturae, 2015, 186: 31−37. doi: 10.1016/j.scienta.2015.02.016 [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [19] 郭涛, 申鸿, 彭思利, 等. 氮、磷供给水平对丛枝菌根真菌生长发育的影响 [J]. 植物营养与肥料学报, 2009, 15(3):690−695. doi: 10.3321/j.issn:1008-505X.2009.03.030GUO T, SHEN H, PENG S L, et al. Influence of nitrogen and phosphorus supplying levels on development of arbuscular mycorrhizal fungi [J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 690−695.(in Chinese) doi: 10.3321/j.issn:1008-505X.2009.03.030 [20] 邓杰, 李芳, 古丽君, 等. 不同土壤pH下AM真菌对苜蓿苗期生长的影响 [J]. 草业科学, 2019, 36(11):2854−2862.DENG J, LI F, GU L J, et al. Effect of arbuscular mycorrhizal fungi on alfalfa seedling growth at different soil pH [J]. Pratacultural Science, 2019, 36(11): 2854−2862.(in Chinese) [21] LUO Y F, WANG Z K, HE Y L, et al. High-throughput sequencing analysis of the rhizosphere arbuscular mycorrhizal fungi (AMF) community composition associated with Ferula sinkiangensis [J]. BMC Microbiology, 2020, 20(1): 335. doi: 10.1186/s12866-020-02024-x [22] 初亚男, 张海波, 秦泽峰, 等. AM真菌与非菌根植物的相互作用关系 [J]. 应用生态学报, 2018, 29(1):321−326.CHU Y N, ZHANG H B, QIN Z F, et al. Relationship of AM fungi with non-mycorrhizal plants [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 321−326.(in Chinese) [23] BAIRD J M, WALLEY F L, SHIRTLIFFE S J. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil [J]. Mycorrhiza, 2010, 20(8): 541−549. doi: 10.1007/s00572-010-0305-7 [24] 郭艳娥, 李应德, 高萍, 等. 不同磷水平下幼套球囊霉与禾草内生真菌对多年生黑麦草生长的影响 [J]. 草地学报, 2018, 26(6):1458−1466.GUO Y E, LI Y D, GAO P, et al. Effects of Claroideoglomus etunicatum and grass endophyte on the growth of Lolium perenne under different phosphorus levels [J]. Acta Agrestia Sinica, 2018, 26(6): 1458−1466.(in Chinese) [25] 彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理 [J]. 植物营养与肥料学报, 2021, 27(2):293−300. doi: 10.11674/zwyf.20385PENG Q, HE H H, ZHANG X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293−300.(in Chinese) doi: 10.11674/zwyf.20385