Effects of Nitrogen Fertilization on Lodging Resistance of Directly Seeded Rice Plants in Crayfish-Rice
-
摘要:
目的 虾稻模式是湖北省乃至南方稻区农业生产的重要模式,倒伏是影响这一模式水稻产量的主要因素之一,研究直播虾稻适宜施氮量可为其合理施肥提供理论依据。 方法 在虾稻连作模式下,采用典型虾稻品种玉针香、黄华占和鄂丰丝苗为试验材料,以不施肥为对照,设置3个施氮水平(120、150、180 kg·hm−2)的裂区试验,探讨施氮量对直播虾稻抗倒伏能力的影响。 结果 3个虾稻品种主茎倒5、倒4节的节间长度、株高及重心高度、弯曲力矩及倒4节间大小维管束数目随施氮量增加而增加,折断弯矩、大小维管束面积及茎壁厚度随施氮量增加呈先升后降趋势,倒伏指数随施氮量增加呈先降后升趋势。 结论 施氮量在不同虾稻品种的抗倒性存在差异,玉针香适宜施氮量为120 kg·hm−2,鄂丰丝苗适宜施氮量为120~150 kg·hm−2,黄华占适宜施氮量为150 kg·hm−2。 Abstract:Objective Crayfish- rice mode is the important mode for agriculture production in Hubei and even southern China. Lodging is one of the main factors that affect the yield of rice. The study on the suitable nitrogen application rate of direct seeding shrimp rice can provide a theoretical basis for its rational fertilization. Method Under the continuous cropping mode of crayfish-rice, using typical crayfish-rice varieties Yuzhenxiang, Huanghuazhan and Efengsimiao as experimental materials and no fertilization as control(CK), a split plot experiment was set up at three nitrogen application levels (120, 150 and 180 kg · hm − 2) to explore the effect of nitrogen application rate on the lodging resistance of direct seeding crayfish-rice. Result With increasing N application, the internode length, plant height, and gravity center height, bending momen of the 4th and 5th internode from the top, and big and small vascular bundles number of the 4th internode from the top of the rice plants increased, while the breaking momente, big and small vascular bundles area, and culm wall thickness increased initially followed by a decline, and the lodging index decreased at first and then rose. Conclusion The lodging resistance of the crayfish-rice cultivated rice plants in response to different N fertilizations varied among the 3 varieties. The optimal N application rate for Yuzhenxiang was 120 kg·hm−2, for Efengsimiao 120-150 kg·hm−2, and for Huanghuazhan 150 kg·hm−2. -
Key words:
- Nitrogen fertilizer application rate /
- crayfish-rice /
- lodging /
- direct seeding /
- lodging index
-
图 1 不同施氮水平下虾稻主茎倒4节间倒伏指数
注:图中小写字母表示差异显著(P<0.05),大写字母表示差异极显著(P <0.01)。图2同。
Figure 1. Lodging index of the 4th internode from the top of rice plant in crayfish-rice cocultivation fertilized with different N application levels
Note: small letters indicate significant difference (P <0.05), and capital letters indicate very significant difference (P < 0.01). The same as Fig.2.
图 3 不同施氮水平下虾稻主茎倒4、5节间的剖面结构
注:图中字母Y表示玉针香,H表示黄华占,E表示鄂丰丝苗,N0、N1、N2、N3分别表示施氮水平,左图为倒4节间剖面结构,右图为倒5节间剖面结构。
Figure 3. Anatomical structures of the 4th and 5th internode from the top on main stem of rice plant in crayfish-rice cocultivation fertilized with different N application levels
Note: the letter Y represents Yuzhenxiang, H represents Huanghuazhan, E represents Efengsimiao, N0, N1, N2 and N3 respectively represent the nitrogen application level, and the figure on the left shows the section structure of the 4th internode from the top and the section structure of the 5th internode from the top.
表 1 不同施氮水平下虾稻的主茎形态
Table 1. Morphology of main stem on rice plant in crayfish-rice cocultivation fertilized with different N application levels
品种
Varieties氮处理
Nitrogen treatment株高
Plant height/cm重心高度
Height of gravity/cm节间长度
Internode length/cm齐穗后第19天
The 19th day
after heading齐穗后第26天
The 26th day
after heading倒4节
The 4th internode
from the top倒5节
The 5thinternode
from the top玉针香 Yuzhenxiang N0 135.92±2.74d 54.79±3.01b 56.17±2.98c 13.63±1.16c 5.66±1.48c N1 138.28±4.07c 56.03±2.30b 57.39±1.78bc 15.46±1.90b 7.24±1.50b N2 140.97±6.58b 56.36±4.43b 57.54±1.58b 17.42±1.93a 7.82±2.30b N3 146.35±4.80a 60.85±7.14a 61.85±4.19a 17.54±3.55a 9.27±1.98a 均值 Average 140.38Aa 57.01Aa 58.24 Aa 16.01Aa 7.50Aa 黄华占 Huanghuazhan N0 103.00±3.53b 44.11±3.18a 45.70±1.30a 9.80±1.14b 4.46±1.79a N1 105.31±5.96b 45.81±3.47a 45.87±1.64a 10.73±1.20ab 4.57±1.91a N2 106.11±5.20ab 46.10±4.14a 46.47±1.71a 11.13±1.01ab 4.70±3.28a N3 108.66±4.37a 46.66±2.28a 47.45±1.77a 11.87±2.43a 5.26±1.63a 均值 Average 105.77Cc 45.67Cc 46.37Cc 10.88Bb 4.75Bb 鄂丰丝苗 Efengsimiao N0 116.63±5.04c 45.40±2.55b 46.14±2.60c 8.32±1.30b 3.81±0.94b N1 118.87±3.40bc 47.79±3.01ab 48.58±2.35b 8.99±1.77ab 4.61±1.41ab N2 121.50±4.24ab 48.71±2.43a 51.23±2.29a 9.58±1.68ab 5.11±1.17ab N3 124.23±5.49a 50.95±3.44a 52.51±2.03a 10.05±1.64a 5.48±1.21a 均值Average 120.31Bb 48.21Bb 49.08Bb 9.24Cc 4.75Bb 方差分析 Variance analysis N ** ** ** ** ** V ** ** ** ** ** N*V ns ns ** ns ns 注:表中小写字母和*表示不同施氮处理或品种间差异显著(P<0.05),大写字母和**表示差异极显著(P<0.01),N表示施氮处理,V表示品种。表2、3同。
Note: Small letters and * in the table indicate significant difference (P<0.05), capital letters and * * indicate extremely significant difference (P < 0.01), N indicates nitrogen application treatment, and V indicates variety. The same as Fig.2,3.表 2 不同施氮水平下虾稻主茎倒4、倒5节间的力学性状
Table 2. Mechanical properties of the 4th and 5th internode from the top on main stem of rice plant in crayfish-rice cocultivation fertilized with different N application levels
品种
Varieties氮处理
Nitrogen
treatment折断弯矩
Breaking moment/(g·cm)弯曲力矩
Bending moment/(g·cm)齐穗后19天
The 19th day after heading齐穗后26天
The 26th day after heading齐穗后19天
The 19th day after heading齐穗后26天
The 26th day after heading倒4节
The 4th
internode
from the top倒5节
The 5th
internode
from the tope top倒4节
The 4th
internode
from the top倒5节
The 5th
internode
from the top倒4节
The 4th
internode
from the top倒5节
The 5th
internode
from the top倒4节
The 4th
internode
from the top倒5节
The 5th
internode
from the top玉针香
YuzhenxiangN0 823±186b 1028±153b 837±90b 986±116c 1125±95c 1350±106d 1243±105b 1528±128c N1 908±322b 1169±192b 874±68ab 1128±110b 1153±98c 1398±84 c 1289±102b 1573±117c N2 1273±196a 1651±309a 975±120a 1314±422a 1225±105b 1519±110b 1346±123a 1688±148b N3 852±256b 1098±293b 748±60c 1049±85bc 1411±88 a 1754±107a 1410±105a 1788±142a 均值
Average964Bb 1237Cc 859Bb 1119Cc 1228Bb 1505Ab 1322Ab 1644Aa 黄华占
HuanghuazhanN0 818±176b 1242±351c 661±86c 991±78c 652±76c 794±73c 683±106c 817±121c N1 991±168ab 1486±241b 914±81b 1377±103b 708±56b 853±45b 732±121bc 874±105bc N2 1083±139a 1992±327a 1093142a 1611±122a 760±88b 912±92b 772±70b 931±82b N3 936±154ab 1673±394b 833±197b 1394±101b 853±45a 1083±55a 890±53a 1100±84a 均值
Average956Bb 1598Bb 875Bb 1343Bb 743Cc 910Bc 770Bc 930Bb 鄂丰丝苗
EfengsimiaoN0 1271±296b 1733±191 b 1314±252b 1357±134c 1152±75d 1399±81c 1187±94c 1435±78c N1 1657±332a 2030±266a 1512±156a 1757±100a 1222±117c 1431±90c 1307±94b 1567±84b N2 1616±452a 1791±333ab 1345±192b 1567±154b 1328±73b 1588±109b 1499±142a 1757±104a N3 1354±307b 1648±500b 1239±246b 1352±136c 1572±116a 1771±126a 1542±126a 1811±97a 均值
Average1475Aa 1801Aa 1353Aa 1508Aa 1318Aa 1547Aa 1384Aa 1643Aa 方差分析
Variance analysisN ** ** ** ** ** ** ** ** V ** ** ** ** ** ** ** ** N*V ns ** ** ** ** ns * ns 表 3 不同施氮水平下虾稻主茎倒4、倒5节间的结构特征
Table 3. Anatomical structures of the 4th and 5th internode from the top on main stem of rice plant in crayfish-rice cocultivation fertilized with different N application levels
品种
Varieties氮处理
Nitrogen
treatment大维管束数目
Big vascular bundles小维管束数目
Small vascular bundles大维管束面积
Big vascular bundles area/(×10−3mm2)小维管束面积
Small vascular bundles area/(×10−3mm2)茎壁厚度
Culm wall thickness/(×10−2mm)倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top玉针香
YuzhenxiangN0 29.33±1.53a 28.67±1.53b 27.67±3.06a 29.33±1.53a 11.46±1.66b 10.66±1.71c 4.29±0.64a 5.01±1.09a 28.60±0.46b 30.90±0.85b N1 29.67±0.58a 31.33±0.58a 28.33±0.58a 29.33±4.16a 11.63±1.69b 13.06±0.56b 4.95±0.34a 5.76±0.61a 34.27±0.86a 35.43±0.47a N2 30.33±0.58a 31.67±3.21a 28.67±1.15a 30.67±0.58a 14.54±1.98a 17.60±1.19a 4.20±1.41a 5.81±1.04a 35.23±0.51a 35.97±0.93a N3 30.67±0.58a 30.00±1.00ab 29.00±1.00a 28.67±0.58a 11.76±1.29b 13.59±0.47b 4.22±0.88a 5.18±0.60a 34.53±0.61a 36.50±0.50a 均值
Average30.00Ab 30.42ABb 28.42Aab 29.50Aa 12.35Aa 13.73Cc 4.42Aa 5.44Aa 33.16Bb 34.70Cc 黄华占
HuanghuazhanN0 27.67±1.15b 27.33±2.08b 25.67±1.53b 24.33±1.15c 10.80±1.83b 12.22±0.33b 3.93±0.65b 5.21±0.74a 28.77±0.32c 33.03±0.90d N1 29.33±1.53a 31.00±1.00a 26.00±2.00b 30.67±2.08a 11.17±1.46b 20.73±2.01a 4.61±0.41ab 6.04±0.94a 30.40±0.66b 45.77±0.45b N2 30.33±2.08a 28.33±1.15ab 27.33±1.15ab 27.67±0.58ab 16.32±2.10a 18.59±1.42a 5.43±0.87a 5.12±0.80a 37.00±1.32a 48.30±0.61a N3 31.33±0.58a 27.00±2.00 b 29.67±2.89 a 26.67±2.08 b 15.61±1.79a 13.56±2.71b 4.96±0.32ab 5.08±1.07a 31.50±0.92b 38.67±1.48c 均值
Average29.67 Ab 28.42 Bc 27.17 Ab 27.34 Ab 13.48Aa 16.28Bb 4.74Aa 5.36Aa 31.92Cc 41.44Bb 鄂丰丝苗
EfengsimiaoN0 31.00±2.00b 31.67±1.53a 29.00±1.00b 28.00±1.00a 10.21±0.15b 11.54±2.17c 2.41±0.36b 3.28±0.20c 36.03±0.40d 43.83±1.08d N1 31.67±3.21b 32.67±4.04a 29.67±2.08ab 28.33±2.31a 15.53±0.66a 22.88±1.51a 5.66±0.88a 7.20±0.67a 55.03±0.64a 85.47±0.55a N2 32.33±0.58ab 33.00±1.00a 30.00±1.00ab 29.67±2.31a 15.21±2.37a 21.31±2.79ab 5.60±0.46a 5.61±0.74b 45.27±0.67c 55.93±0.50c N3 34.33±0.58a 33.67±1.53a 31.33±1.15a 30.67±1.15a 14.49±1.58a 19.67±1.88b 5.56±1.59a 5.14±0.27b 50.03±0.16b 66.27±1.85b 均值
Average32.33 Aa 32.75 Aa 30.00 Aa 29.17 Aab 13.86Aa 18.85Aa 4.81Aa 5.31Aa 46.59Aa 62.88Aa 方差分析
Variance analysisN * ns * ns ns ** ns ns ** ** V ** ** ns ns ** ** ** * ** ** N*V ns ns ns ns * ** * ** ** ** 表 4 主茎形态、力学性状及剖面结构与倒伏指数的相关性分析
Table 4. Correlations between morphology, mechanical properties, cross-sectional structure, and lodging index of rice plant main stem
倒伏指数
Lodging index齐穗后第19天
The 19th day after heading齐穗后第26天
The 26th day after heading倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top倒4节
The 4th internode
from the top倒5节
The 5th internode
from the top形态性状
Morphological characters重心高度
Height of gravity/cm0.82** 0.88** 0.88** 0.94** 株高
Plant height/cm0.86** 0.89** 0.38 0.60* 节间长度
Internode length/cm0.67* 0.76** 0.79** 0.76** 力学性状
Mechanical properties折断弯矩
Breaking moment/(g·cm)−0.41 −0.68** −0.45 −0.56* 弯曲力矩
Bending moment/(g·cm)0.58* 0.74** 0.59* 0.82** 注:*表示差异显著(P<0.05), **表示差异极显著(P<0.01)。
Note: * indicates significant difference (P<0.05), and * * indicates extremely significant difference (P<0.01). -
[1] 习敏, 吴文革, 许有尊, 等. 钵苗机插密度对不同穗型杂交籼稻生长和产量形成的影响 [J]. 福建农业学报, 2021, 36(7):735−741.XI M, WU W G, XU Y Z, et al. Effects of density of mechanically transplanted pot seedlings on growth and yield of hybrid indica rice with different panicle types [J]. Fujian Journal of Agricultural Sciences, 2021, 36(7): 735−741.(in Chinese) [2] SHAH L, YAHYA M, SHAH S M A, et al. Improving lodging resistance: Using wheat and rice as classical examples [J]. International Journal of Molecular Sciences, 2019, 20(17): 4211. doi: 10.3390/ijms20174211 [3] ZHANG S G, YANG Y C, ZHAI W W, et al. Controlled-release nitrogen fertilizer improved lodging resistance and potassium and silicon uptake of direct-seeded rice [J]. Crop Science, 2019, 59(6): 2733−2740. doi: 10.2135/cropsci2018.12.0765 [4] PAN J, ZHAO J, LIU Y, et al. Optimized nitrogen management enhances lodging resistance of rice and its Morpho-anatomical, mechanical, and molecular mechanisms [J]. Scientific Reports, 2019, 9: 20274. doi: 10.1038/s41598-019-56620-7 [5] 申广勒, 石英尧, 黄艳玲, 等. 水稻抗倒伏特性及其与茎秆性状的相关性研究 [J]. 中国农学通报, 2007, 23(12):58−62. doi: 10.3969/j.issn.1000-6850.2007.12.014SHEN G L, SHI Y Y, HUANG Y L, et al. Study on rice lodging resistance character and correlation between the culm traits and lodging resistance traits [J]. Chinese Agricultural Science Bulletin, 2007, 23(12): 58−62.(in Chinese) doi: 10.3969/j.issn.1000-6850.2007.12.014 [6] 李学松. 氮肥和密度对新株型水稻产量、群体质量和茎秆抗折力的影响[D]. 合肥: 安徽农业大学, 2015.LI X S. Effects of nitrogen fertilizer and density on the yield, population quality and stem flexural of new plant type rice[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese) [7] 石扬娟. 施肥方式和栽插密度对水稻抗倒伏性状影响研究[D]. 合肥: 安徽农业大学, 2008.SHI Y J. Studies on traits correlating to lodging resistance under the different fertilization manner and planting density in rice[D]. Hefei: Anhui Agricultural University, 2008. (in Chinese) [8] 萧长亮, 解保胜, 王安东, 等. 氮和稀效唑调控对寒地水稻倒伏和产量的影响 [J]. 作物杂志, 2017(6):96−103.XIAO C L, XIE B S, WANG A D, et al. Effects of nitrogen and uniconazole regulation on lodging resistance and yield of rice in cold region [J]. Crops, 2017(6): 96−103.(in Chinese) [9] 房贤涛, 何花榕, 谢祖钦, 等. 不同施氮量对杂交稻茎秆性状及抗倒伏性的影响 [J]. 福建农业学报, 2016, 31(10):1034−1038.FANG X T, HE H R, XIE Z Q, et al. The effect of different nitrogen rates on culm traits and lodging resistance of hybrid rice [J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1034−1038.(in Chinese) [10] 王燚, 魏中伟, 邵平, 等. 水稻茎秆特性与抗倒伏关系的研究现状 [J]. 湖北农业科学, 2015, 54(9):2054−2057.WANG Y, WEI Z W, SHAO P, et al. Research status on relationship between culm characteristics and lodging resistance of rice [J]. Hubei Agricultural Sciences, 2015, 54(9): 2054−2057.(in Chinese) [11] ZHANG M H, MO Z W, LIAO J, et al. Lodging resistance related to root traits for mechanized wet-seeding of two super rice cultivars [J]. Rice Science, 2021, 28(2): 200−208. doi: 10.1016/j.rsci.2021.01.009 [12] 孙加威, 李娜, 王春雨, 等. 栽插方式和施钾量对杂交籼稻抗倒伏能力的影响 [J]. 核农学报, 2017, 31(12):2408−2417. doi: 10.11869/j.issn.100-8551.2017.12.2408SUN J W, LI N, WANG C Y, et al. Effects of transplanting methods and potassium rates on lodging resistance of hybrid rice [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2408−2417.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.12.2408 [13] 姚志刚, 陈良. 水稻倒伏原因与旱穴直播抗倒伏技术 [J]. 农业工程技术, 2020, 40(26):34−35.YAO Z G, CHEN L. Reasons of rice lodging and anti-lodging technology of direct seeding in dry cave [J]. Agricultural Engineering Technology, 2020, 40(26): 34−35.(in Chinese) [14] 蒋明金, 大川泰一郎, 马均. 播栽方式对2个籼稻品种抗倒伏能力的影响 [J]. 四川农业大学学报, 2020, 38(4):391−398.JIANG M J, OOKAWA Taiichiro,MA J. Effects of planting methods on lodging resistance of two indica rice varieties [J]. Journal of Sichuan Agricultural University, 2020, 38(4): 391−398.(in Chinese) [15] HUI Z. Causes and prevention and control of rice lodging[J]. Plant Diseases and Pests, 2018, 9(S1): 23-26, 28. [16] 陈婷, 胡瑶, 吴凡, 等. 氮磷调控对杂交水稻旌优781抗倒伏性及产量的影响 [J]. 云南大学学报(自然科学版), 2020, 42(6):1190−1201.CHEN T, HU Y, WU F, et al. Effects of nitrogen and phosphorus regulation on lodging resistance and yield of Jingyou 781 hybrid rice [J]. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(6): 1190−1201.(in Chinese) [17] ZHANG W J, LI G H, YANG Y M, et al. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes [J]. Journal of Integrative Agriculture, 2014, 13(1): 63−72. doi: 10.1016/S2095-3119(13)60388-3 [18] 蒋明金, 王海月, 何艳, 等. 氮肥管理对直播杂交水稻抗倒伏能力的影响 [J]. 核农学报, 2020, 34(1):157−168. doi: 10.11869/j.issn.100-8551.2020.01.0157JIANG M J, WANG H Y, HE Y, et al. Effects of nitrogen management on lodging resistance of direct-seeded rice [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 157−168.(in Chinese) doi: 10.11869/j.issn.100-8551.2020.01.0157 [19] 李国辉, 钟旭华, 田卡, 等. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理 [J]. 中国农业科学, 2013, 46(7):1323−1334. doi: 10.3864/j.issn.0578-1752.2013.07.003LI G H, ZHONG X H, TIAN K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms [J]. Scientia Agricultura Sinica, 2013, 46(7): 1323−1334.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.07.003 [20] 陈松文, 江洋, 汪金平, 等. 湖北省稻虾模式发展现状与对策分析 [J]. 华中农业大学学报, 2020, 39(2):1−7.CHEN S W, JIANG Y, WANG J P, et al. Situation and countermeasures of integrated rice-crayfish farming in Hubei Province [J]. Journal of Huazhong Agricultural University, 2020, 39(2): 1−7.(in Chinese) [21] 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略 [J]. 中国生态农业学报, 2017, 25(9):1245−1253.CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development [J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245−1253.(in Chinese) [22] 江洋, 汪金平, 曹凑贵. 稻田种养绿色发展技术 [J]. 作物杂志, 2020(2):200−204.JIANG Y, WANG J P, CAO C G. Green development technology of rice farming and breeding [J]. Crops, 2020(2): 200−204.(in Chinese) [23] 石世杰, 李纯杰, 曹凑贵, 等. 稻虾共作模式下不同播期对水稻产量和品质的影响 [J]. 华中农业大学学报, 2020, 39(2):25−32.SHI S J, LI C J, CAO C G, et al. Effects of different sowing date on yield and quality of high quality rice in rice-crayfish ecosystem [J]. Journal of Huazhong Agricultural University, 2020, 39(2): 25−32.(in Chinese) [24] 李阳阳. 机插方式和栽插规格对稻虾连作下水稻产量和品质的影响研究[D]. 扬州: 扬州大学, 2021.LI Y Y. Effects of mechanically transplanting methods and planting densities on yield and quality of rice under rice-crayfish continuous production system[D]. Yangzhou: Yangzhou University, 2021. (in Chinese) [25] OOKAWA T, ISHIHARA K. Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice [J]. Japanese Journal of Crop Science, 1992, 61(3): 419−425. doi: 10.1626/jcs.61.419 [26] LIU Q H, MA J Q, ZHAO Q L, et al. Physical traits related to rice lodging resistance under different simplified-cultivation methods [J]. Agronomy Journal, 2018, 110(1): 127−132. doi: 10.2134/agronj2017.09.0548 [27] 胡振阳, 程宏, 卢臣, 等. 施氮量和植物生长调节剂对优质稻抗倒能力及产量的调控效应 [J]. 江苏农业科学, 2021, 49(6):52−60.HU Z Y, CHENG H, LU C, et al. Effects of nitrogen application and plant growth regulators on lodging resistance and yield of high-quality rice [J]. Jiangsu Agricultural Sciences, 2021, 49(6): 52−60.(in Chinese) [28] 杨艳华, 朱镇, 张亚东, 等. 水稻茎秆解剖结构与抗倒伏能力关系的研究 [J]. 广西植物, 2012, 32(6):834−839. doi: 10.3969/j.issn.1000-3142.2012.06.022YANG Y H, ZHU Z, ZHANG Y D, et al. Relationship between anatomic structure of the stem and lodging resistance of rice [J]. Guihaia, 2012, 32(6): 834−839.(in Chinese) doi: 10.3969/j.issn.1000-3142.2012.06.022 [29] 田文涛, 邵平, 王燚, 等. 超级杂交稻茎秆形态结构及其与抗倒性的关系研究 [J]. 杂交水稻, 2017, 32(2):67−71,81.TIAN W T, SHAO P, WANG Y, et al. Stem morphological structure and its relation to lodging resistance of super hybrid rice [J]. Hybrid Rice, 2017, 32(2): 67−71,81.(in Chinese) [30] 汪清焰, 刘斌美, 杨阳, 等. 水稻脆茎突变体细胞壁组分与茎秆力学性能的研究 [J]. 生物学杂志, 2020, 37(1):26−29. doi: 10.3969/j.issn.2095-1736.2020.01.026WANG Q Y, LIU B M, YANG Y, et al. Cell wall components and mechanical properties in brittle culm mutants of rice [J]. Journal of Biology, 2020, 37(1): 26−29.(in Chinese) doi: 10.3969/j.issn.2095-1736.2020.01.026 [31] 肖楠, 董立强, 丛琳, 等. 施氮量对旱直播粳稻抗倒伏性及产量的影响 [J]. 沈阳农业大学学报, 2017, 48(6):647−653.XIAO N, DONG L Q, CONG L, et al. Effect of nitrogen application on lodging resistance and yields of Japonica rice under drill seeding [J]. Journal of Shenyang Agricultural University, 2017, 48(6): 647−653.(in Chinese) [32] 张忠旭, 陈温福, 杨振玉, 等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响 [J]. 沈阳农业大学学报, 1999, 30(2):81−85.ZHANG Z X, CHEN W F, YANG Z Y, et al. Effect of lodging resistance on yield and its relationship with stalk physical characteristics [J]. Journal of Shenyang Agricultural University, 1999, 30(2): 81−85.(in Chinese) [33] 吴本丽, 陈贵生, 赵慧敏, 等. 巢湖地区稻虾共作模式对稻田土壤肥力的影响 [J]. 安徽农业大学学报, 2018, 45(1):96−100.WU B L, CHEN G S, ZHAO H M, et al. Effects of the integrated rice-crayfish mode on soil fertility in Chaohu Lake region [J]. Journal of Anhui Agricultural University, 2018, 45(1): 96−100.(in Chinese) [34] 杨波, 秦德荣, 刘艳, 等. 超级稻连粳7号的抗倒伏机理 [J]. 江苏农业学报, 2016, 32(6):1212−1218. doi: 10.3969/j.issn.1000-4440.2016.06.003YANG B, QIN D R, LIU Y, et al. Lodging resistance mechanism of super rice Lianjing 7 [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(6): 1212−1218.(in Chinese) doi: 10.3969/j.issn.1000-4440.2016.06.003 [35] 吴晓然, 张巫军, 伍龙梅, 等. 超级杂交籼稻抗倒能力比较及其对氮素的响应 [J]. 中国农业科学, 2015, 48(14):2705−2717. doi: 10.3864/j.issn.0578-1752.2015.14.003WU X R, ZHANG W J, WU L M, et al. Characteristics of lodging resistance of super-hybrid indica rice and its response to nitrogen [J]. Scientia Agricultura Sinica, 2015, 48(14): 2705−2717.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.14.003 [36] DING C, LUO X K, WU Q, et al. Compact plant type rice has higher lodging and N resistance under machine transplanting [J]. Journal of Integrative Agriculture, 2021, 20(1): 65−77. doi: 10.1016/S2095-3119(20)63229-4 [37] 彭显龙, 梁辰, 于彩莲, 等. 氮肥优化管理对稻花香抗倒伏能力的影响 [J]. 东北农业大学学报, 2017, 48(8):45−50,87. doi: 10.3969/j.issn.1005-9369.2017.08.006PENG X L, LIANG C, YU C L, et al. Effect of optimal nitrogen management on rice lodging resistance ability of Daohuaxiang-2 [J]. Journal of Northeast Agricultural University, 2017, 48(8): 45−50,87.(in Chinese) doi: 10.3969/j.issn.1005-9369.2017.08.006 [38] ZHANG W J, WU L M, DING Y F, et al. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in Japonica rice [J]. Journal of Integrative Agriculture, 2016, 15(5): 992−1004. doi: 10.1016/S2095-3119(15)61166-2 [39] ZHANG W J, WU L M, WU X R, et al. Lodging resistance of Japonica rice (Oryza sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates [J]. Rice, 2016, 9(1): 31. doi: 10.1186/s12284-016-0103-8 [40] 陈书强, 赵海新, 杜晓东, 等. 氮肥运筹对黑龙江省第三积温带水稻抗倒伏能力的影响 [J]. 华北农学报, 2015, 30(S1):390−394. doi: 10.7668/hbnxb.2015.S1.070CHEN S Q, ZHAO H X, DU X D, et al. Effects of nitrogen management on rice lodging resistance of the third accumulative temperature belt in Heilongjiang Province [J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1): 390−394.(in Chinese) doi: 10.7668/hbnxb.2015.S1.070