Effects of N×S Interactions on Yield and Fertilizer Utilization of Fragrant Rice Grown at Different Habitats
-
摘要:
目的 选配不同生境适用的可提高香稻产量及肥料利用率的理想氮硫互作组合。 方法 2018年在广东江门(生境1)和湖南辰溪(生境2)等2个生境中,采用田间试验裂区设计,主区为氮肥、硫肥配施水平,副区为不同香稻品种;施肥水平有3个,氮肥分别为0(N1)、90(N2) 和180 (N3)kg·hm−2,硫肥分别为0(S1)、45(S2)、90(S3)kg·hm−2,氮肥、硫肥水平两两组合,共有N1S1(对照)、N1S2、N1S3、N2S1、N2S2、N2S3、N3S1、N3S2、N3S3等 9个处理组合,每个处理设3个重复,合计27个小区,随机分布。副区品种选用优质香稻品种湘晚籼13号和湘晚籼17号。 结果 (1)生境2(湖南辰溪)水稻生长发育期间的气温日较差大、夜间温度较低,水稻生育期长、红壤水稻土保水保肥的能力高,使其有效穗数、每穗总粒数及香稻产量极显著高于广东江门(生境1),但结实率极显著低于生境1(P<0.01)。(2)氮硫互作处理N3S3、N3S2、N2S2、N2S1、N2S3、N3S1均极显著增加了香稻的产量;N3S2、N2S2、N2S1、N2S3、N3S1极显著增加了单位面积有效穗数、结实率和千粒重,但极显著降低了每穗总粒数(每穗颖花数)(P<0.01)。(3)生境1的N2S3极显著增加了水稻湘晚籼13号的产量和氮肥利用率。生境2的N3S2处理极显著增加了湘晚籼17号的产量和硫肥利用率、氮肥利用率,其产量N3S2>N3S3>N2S1>N2S2>N3S1>N2S3,均极显著大于湘晚籼13号的各氮硫互作处理(P<0.01)。(4)生境1的湘晚籼13号的氮肥利用率随施硫量的增加呈先增加后降低的抛物线趋势,高硫(N2S3和N3S3处理)均显著降低了氮肥利用率;其硫肥利用率在S2的施肥条件下随施氮水平的增加极显著增加,N3S2最高达24.44 kg·kg−1。湘晚籼17号在N2施氮水平时氮肥利用率随施硫量的增加而增加,在高氮条件增施高硫(N3S3)能显著提高其氮肥利用率;其硫肥利用率随施氮量的增加呈先增加后减少的抛物线型,最高的N2S3处理达4.85 kg·kg−1。(5)生境2的湘晚籼13号氮肥利用率均随施硫量的增加而增加;而硫肥利用率最高的是N2S2处理,为19.11 kg·kg−1。湘晚籼17号氮肥利用率随着施硫水平的增加而显著降低;其硫肥利用率也在高氮条件下随施硫量的增加而降低;其中最高的是N3S2处理,达69.27 kg·kg−1,其次是N3S3处理。 结论 生境、氮硫互作处理及品种均不同程度地影响了香稻产量和产量构成指数及肥料利用率;N2S3极显著增加了水稻湘晚籼13号的产量和氮肥利用率。湖南辰溪的N3S2处理极显著增加了湘晚籼17号的产量和硫肥利用率、氮肥利用率。 Abstract:Objective To optimize N×S interactions at differentiated habitats for maximal yield and fertilizer use efficiency of fragrant rice. Methods A split-plot experiment was conducted in 2018 at two typically different fragrant rice production areas, Habit 1 at Jiangmen, Guangdong and Habit 2 at Chenxi, Hunan. The main lots were designed for varied applications of N and S, while the sublots for planting of two cultivars of high-quality fragrant rice. The N application rates included 0 (N1), 90 kg·hm−2 (N2), and 180 kg·hm−2 (N3), and the S at 0 (S1), 45 kg·hm−2 (S2), and 90 kg·hm−2 (S3). A total of 9 treatments of combined N×S applications, i.e., N1S1 (control), N1S2, N1S3, N2S1, N2S2, N2S3, N3S1, N3S2, and N3S3, with 3 replicates on the randomly distributed sublots were implemented. Results (1) Because Habit 2 had a wider range of daily temperatures, cooler night temperature, longer growing period for the rice, and greater ability of the red paddy soil to retain water and fertilizer than Habit 1, the rice grown on Habit 2 had significant higher yield, number of productive spikes, and total grain number per panicle (P<0.01). (2) N3S3, N3S2, N2S2, N2S1, N2S3, and N3S1 significantly increased the rice yield and N3S2, N2S2, N2S1, N2S3, and N3S1 significantly raised the number of productive ears per unit area, seed setting rate, and 1 000-grain weight of the rice but significantly reduced the total grain number per panicle (P<0.01). (3) At Habit 1, N2S3 significantly increased the yield and N use efficiency of the rice variety, Xiangwanxian No.13. At Habitat 2, the yield and N and S use efficiency of Xiangwanxian No.17 were significantly increased by N3S2 with the increases ranking as N3S2>N3S3>N2S1>N2S2>N3S1>N2S3 (P<0.01), which were significantly higher than those for Xiangwanxian No.13. (4) The N use efficiency of Xiangwanxian No.13 at Habit 1 increased and then decreased parabolically with increasing S. The S use efficiency of rice plants reached a peak of 24.44 kg·kg−1 under N3S2 and declined at a high S application level, such as N2S3 and N3S3. On the other hand, the N use efficiency of Xiangwanxian No.17 in Habit 1 increased with increasing S under N2, but so did N3S3. On the S use efficiency of the rice plants, the parabolic effect of N was also observed with N2S3 yielding the maximum at 4.85 kg·kg−1. (5) The N utilization by Xiangwanxian No.13 at Habit 2 improved with S application, but the S use efficiency peaked at 19.11 kg·kg−1 under N2S2. Whereas Xiangwanxian No.17 showed a decreased N use efficiency upon increasing S, as well as the S use efficiency decreased from 69.27 kg·kg−1 under N3S2 to that under N3S3. Conclusion To varying degrees habitat, cultivar, and N×S interaction all affected the yield, yield components as well as the N and S use efficiency of the fragrant rice. N2S3 significantly increased the yield and N use efficiency of Xiangwanxian No.13, and N3S2 of Xiangwanxian No.17. -
Key words:
- Habit /
- N×S interactions /
- fragrant rice /
- actual yield /
- fertilizer use efficiency
-
表 1 2个不同生境水稻灌浆期气候数据的比较
Table 1. Ecological and meteorological data on Habitat 1 and 2 in filling stage of fragrant rice
地点
Location海拔
Altitude/m经度
Longitude纬度
Latitude气候类型
Climate
type日平均温度
Daily mean
temperature/℃年日照时数
Hours of
sunshine per
year/h年降雨量
Annual
rainfall/
mm相对湿度
Relative
humidity/%广东江门(生境1)
Jiangmen,Guangdong(Habit 1)10 112°18′~113°03′ 21°34′~22°27′ 南亚热带海洋气候 22.8~32.2 2132 1800~2700 76.5 湖南怀化(生境2)
Huaihua, Hunan(Habit 2)140 110°10′~110°20′ 27°58′~29°38′ 亚热带季风性气候 17.6~22.9 1510 1328~1800 79 注:数据为当地气象局2018年的气象资料。
Note: The data are provided by the local meteorological bureau from 2018.表 2 2个试验点香稻生育期气候资料的比较
Table 2. Ecological and meteorological data on Habitat 1 and 2 in entire growth period of fragrant rice
地点
Location月份
Month平均气温
Average
temperature/℃日最高气温
Maximum
temperature/℃日最低气温
Minimum
temperature/℃气温日较差
Temperature
range/℃平均水气压
Average water
pressure/hPa平均相对湿度
Average
relative humidity/%日平均风速
Mean wind speed/
(m·s-1)日照时数
Hours of
sunshine/h生境1
Habit 15月 26.14 29.64 23.64 6.00 28.27 84.03 1.75 3.50 6月 29.01 32.63 26.52 6.11 36.93 85.47 1.92 6.09 7月 28.36 32.13 25.91 6.22 32.99 86.65 1.69 5.65 8月 29.15 36.16 26.23 6.93 36.40 83.81 1.97 6.35 9月 29.10 36.13 26.42 6.71 32.76 82.43 1.55 5.40 10月 25.04 28.51 22.36 6.15 23.89 74.16 2.63 6.00 11月 20.71 23.95 18.35 5.59 18.95 76.93 2.71 2.50 生境2
Habit 25月 22.54 28.32 18.65 9.66 20.16 75.22 1.29 5.98 6月 24.06 28.01 21.63 6.38 26.15 88.24 1.23 2.66 7月 30.01 35.29 25.88 9.41 29.76 72.07 1.47 9.24 8月 29.23 34.02 25.98 8.04 30.97 78.12 1.76 7.77 9月 24.46 29.21 22.19 7.02 27.13 89.24 1.43 4.00 10月 17.99 21.71 15.61 6.10 18.95 91.23 1.80 2.58 11月 12.97 16.96 10.30 6.67 12.66 84.54 1.26 2.36 注:数据为当地气象局2018年和2019年的气象资料。广东江门的香稻抽穗扬花期在9~10月;湖南辰溪的香稻抽穗扬花期在7~8月。
Note: The data are provided by the local meteorological bureau from 2018 to 2019. Flowering period of aromatic rice in Habit 1 was from September to October, and in Habit 2 was from July to August.表 3 2个不同生境的土壤性质
Table 3. Properties of soils of Habitat 1 and 2
生境
LocationpH值
pH value有机质
Organic matter/
(g·kg−1)全氮
Total nitrogen/
(g·kg−1)碱解氮
Alkali-hydrolyzed
nitrogen/
(mg·kg−1)速效磷
Available
phosphorus/
(mg·kg−1)速效钾
Available
potassium/
(mg·kg−1)C/N 有效硫
Available surfur/
(mg·kg−1)生境1 Habit 1 6.0~6.5 27.9 1.46 95.8 10 58 12 13.0 生境2 Habit 2 6.0~6.3 26.0 1.04 88.2 3.1 108 10 38.2 表 4 不同生境对香稻产量及产量构成因素的影响
Table 4. Effects of Habitat 1 and 2 on yield and yield components of fragrant rice
生境
Location产量
Yield/(t·hm−2)有效穗数
Number of effective panicles/
(×104·hm−2)每穗总粒数
Total grains
per panicle/粒结实率
Seed setting
rate/%千粒重
1 000-grain
weight/g生境1 Habit 1 5.81±0.56 Bb 351.42±37.00 Bb 146.9±15.30 Bb 72.70±7.46 Aa 24.80±1.46 Aa 生境2 Habit 2 9.55±1.08 Aa 355.85±54.35 Aa 173±40.70 Aa 67.95±5.6 Bb 24.90±1.66 Aa 注:同列数据后不同大小写字母分别表示不同生境间差异极显著(P<0.01)或差异显著(P<0.05)。
Note:Different uppercase and lowercase letters after the data in the same column indicate extremely significant (P<0.01) or significant (P<0.05) differences among different habitats.表 5 生境×氮硫互作×品种对香稻产量的影响比较
Table 5. Comparison of habitat×treatment×cultivar interactions on rice yield
生境1 Habit 1 生境2 Habit 2 处理
Treatment品种
Cultivar产量
Yield/(t·hm−2)产量的LSD多重比较
LSD multiple comparision处理
Treatment品种
Cultivar产量
Yield/(t·hm−2)产量的LSD多重比较
LSD multiple comparisionP<0.05 P<0.01 P<0.05 P<0.01 N3S2 湘晚籼13号 6.69±0.115 a A N3S2 湘晚籼17号 13.52±0.271 a A N2S2 湘晚籼13号 6.44±0.046 b B N3S3 湘晚籼17号 12.63±0.276 b B N3S3 湘晚籼17号 6.37±0.087 b BC N2S1 湘晚籼17号 11.66±0.241 c C N3S3 湘晚籼13号 6.32±0.135 bc BCD N2S2 湘晚籼17号 11.16±0.089 d C N2S1 湘晚籼13号 6.23±0.025 cd CDE N3S1 湘晚籼17号 10.40±0.334 e D N2S3 湘晚籼17号 6.14±0.055 de DE N2S3 湘晚籼17号 10.08±0.200 ef DE N3S1 湘晚籼17号 6.06±0.040 e E N2S3 湘晚籼13号 10.02±0.193 f DE N1S3 湘晚籼13号 5.83±0.118 f F N2S2 湘晚籼13号 9.62±0.439 g EF N2S2 湘晚籼17号 5.83±0.132 f F N3S3 湘晚籼13号 9.44±0.099 gh F N1S1 湘晚籼13号 5.71±0.0.36 f FG N1S2 湘晚籼17号 9.36±0.146 gh F N2S1 湘晚籼17号 5.70±0.08 fg FG N1S3 湘晚籼17号 9.13±0.108 h FG N2S3 湘晚籼13号 5.75±0.083 fg FG N2S1 湘晚籼13号 8.76±0.225 i G N3S1 湘晚籼13号 5.59±0.102 g G N1S1 湘晚籼17号 8.72±0.140 i G N3S2 湘晚籼17号 5.61±0.051 g G N3S2 湘晚籼13号 8.22±0.091 i H N1S1 湘晚籼17号 5.18±0.025 h H N3S1 湘晚籼13号 8.17±0.146 i H N1S2 湘晚籼13号 5.06±0.04 hi HI N1S1 湘晚籼13号 7.28±0.105 k I N1S3 湘晚籼17号 5.02±0.025 i HI N1S2 湘晚籼13号 7.12±0.106 k I N1S2 湘晚籼17号 4.98±0.076 i I N1S3 湘晚籼13号 6.55±0.191 l J 注:同列数据后不同大、小写字母分别表示不同处理间差异极显著(P<0.01)或差异显著(P<0.05)。
Note:Different uppercase and lowercase letters after the data in the same column indicate extremely significant (P<0.01) or significant (P<0.05) differences among different treatments. -
[1] 阳树英, 邹应斌, 夏冰, 等. 中国传统地方香稻品种资源的多样性及其在特殊生境成香机理的探讨 [J]. 中国稻米, 2015, 21(3):1−7. doi: 10.3969/j.issn.1006-8082.2015.03.001YANG S Y, ZOU Y B, XIA B, et al. Advances on biodiversity of Chinese traditional regional aromatic rice cultivars and the mechanism of aroma production by the special habitats [J]. China Rice, 2015, 21(3): 1−7.(in Chinese) doi: 10.3969/j.issn.1006-8082.2015.03.001 [2] 邓猛, 阳树英, 邹应斌, 等. 生境对香稻籽粒可溶性蛋白含量的影响 [J]. 西北植物学报, 2011, 31(11):2276−2282.DENG M, YANG S Y, ZOU Y B, et al. Effects of the growth habitat on the content of soluble protein in aromatic rice grains [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(11): 2276−2282.(in Chinese) [3] 肖玉, 谢高地, 鲁春霞. 稻田生态系统氮素转化经济价值研究 [J]. 应用生态学报, 2005, 16(9):1745−1750. doi: 10.3321/j.issn:1001-9332.2005.09.031XIAO Y, XIE G D, LU C X. Economic values of nitrogen transformation in rice field ecosystems [J]. Chinese Journal of Applied Ecology, 2005, 16(9): 1745−1750.(in Chinese) doi: 10.3321/j.issn:1001-9332.2005.09.031 [4] YANG S Y, ZOU Y B, LIANG Y Z, et al. Role of soil total nitrogen in aroma synthesis of traditional regional aromatic rice in China [J]. Field Crops Research, 2012, 125: 151−160. doi: 10.1016/j.fcr.2011.09.002 [5] 阳树英, 王浩, 邹应斌, 等. 氮硫互作对五常香稻产量和氮肥利用率的影响 [J]. 湖南农业大学学报(自然科学版), 2020, 46(2):125−129,183.YANG S Y, WANG H, ZOU Y B, et al. Effects of nitrogen and sulfur fertilizer combinations on the yield and nitrogen use efficiency of ‘Wuchangxiangdao' [J]. Journal of Hunan Agricultural University (Natural Science Edition), 2020, 46(2): 125−129,183.(in Chinese) [6] 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述 [J]. 中国土壤与肥料, 2016(4):1−8. doi: 10.11838/sfsc.20160401LIU Z H, BO L J, LI Y, et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: A review [J]. Soil and Fertilizer Sciences in China, 2016(4): 1−8.(in Chinese) doi: 10.11838/sfsc.20160401 [7] FOLLETT RF. Nitrogen management and ground water protection[M]. Amsterdam, The Netherlands: Elsevier Science Publishers, 2012. [8] TSUJIMOTO Y, INUSAH B, KATSURA K, et al. The effect of sulfur fertilization on rice yields and nitrogen use efficiency in a floodplain ecosystem of northern Ghana [J]. Field Crops Research, 2017, 211: 155−164. doi: 10.1016/j.fcr.2017.06.030 [9] 赵洪涛, 周健民, 范晓晖, 等. 太湖地区主要类型水稻土上施用不同硫肥对水稻氮、硫吸收的影响 [J]. 土壤学报, 2006, 43(5):864−867. doi: 10.3321/j.issn:0564-3929.2006.05.023ZHAO H T, ZHOU J M, FAN X H, et al. Effect of different sulphur fertilizers on uptake and use efficiency of nitrogen and sulphur by ricein the paddy fields of Taihu Lake area [J]. Acta Pedologica Sinica, 2006, 43(5): 864−867.(in Chinese) doi: 10.3321/j.issn:0564-3929.2006.05.023 [10] 刘光荣, 袁福生, 李祖章, 等. 氮硫配施对水稻的效应研究 [J]. 江西农业学报, 2001, 13(2):1−7. doi: 10.3969/j.issn.1001-8581.2001.02.001LIU G R, YUAN F S, LI Z Z, et al. Study on interactive effect of nitrogen and sulfur on rice [J]. Acta Agriculturae Jiangxi, 2001, 13(2): 1−7.(in Chinese) doi: 10.3969/j.issn.1001-8581.2001.02.001 [11] 孙玉桃, 董春华, 聂军, 等. 湖南中低产双季稻田硫肥施用效应 [J]. 西北农业学报, 2019, 28(10):1681−1688.SUN Y T, DONG C H, NIE J, et al. Response of rice growth to sulfur fertilizer application in low and medium-yield double rice-cropping system in Hunan Province [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1681−1688.(in Chinese) [12] 孟赐福, 姜培坤, 曹志洪, 等. 水稻硫素营养和施硫效应的研究进展 [J]. 耕作与栽培, 2010(3):49−51. doi: 10.3969/j.issn.1008-2239.2010.03.023MENG C F, JIANG P K, CAO Z H, et al. Research progress of sulfur nutrition and effect of sulfur application on rice [J]. Tillage and Cultivation, 2010(3): 49−51.(in Chinese) doi: 10.3969/j.issn.1008-2239.2010.03.023 [13] 邹长明, 高菊生, 王伯仁, 等. 长期施用含硫化肥对水稻产量和养分吸收的影响 [J]. 土壤通报, 2006, 37(1):103−106. doi: 10.3321/j.issn:0564-3945.2006.01.024ZOU C M, GAO J S, WANG B R, et al. Effects of long-term application of sulfur-containing chemical fertilizers on yield and nutrient uptake by rice [J]. Chinese Journal of Soil Science, 2006, 37(1): 103−106.(in Chinese) doi: 10.3321/j.issn:0564-3945.2006.01.024 [14] 侯晓娟, 徐明岗, 李冬初, 等. 长期施用含硫含氯化肥稻田土壤化学性质的演变特征 [J]. 中国农业科学, 2010, 43(12):2460−2468. doi: 10.3864/j.issn.0578-1752.2010.12.009HOU X J, XU M G, LI D C, et al. Evolution of the soil chemical properties in paddy field under long-term application of sulfur-containing and chloride-containing fertilizers [J]. Scientia Agricultura Sinica, 2010, 43(12): 2460−2468.(in Chinese) doi: 10.3864/j.issn.0578-1752.2010.12.009 [15] 徐振江, 肖立中, 王维, 等. 香稻产量和品质形成的温度效应[J]. 华南农业大学学报, 2006, 27(4): 1-4.XU Z J, XIAO L Z, WANG W, et al. Effect of temperature on yield and quality of aromatic rice[J]. Journal of South China Agricultural University, 2006, 27(4): 1-4. (in Chinese) WEI Y N, ZHANG J, YANG G T, et al. Effects of different nitrogen levels on yield traits of hybrid rice[J]. Chinese Agricultural Science Bulletin, 2016, 32(24): 6-10. (in Chinese) [16] DEY R K, PRAMANIK K, SAHA T, et al. Growth, yield components and yield of hybrid rice as influenced by nitrogen levels and time of Homo-Brassinolide application [J]. International Journal of Agriculture, Environment and Biotechnology, 2014, 7(4): 817. doi: 10.5958/2230-732X.2014.01392.8 [17] BAI K, MURTHY K, NAIDU M. Effect of graded levels and time of nitrogen application on nutrient uptake, yield and economics of semi-dry rice Oryza sativa L. [J]. Journal of Research Angrau, 2013, 41(2): 21−25. [18] KUMAR V, MAHAJAN G. Effect of timing and rate of nitrogen application on productivity of basmati rice (Oryza sativa L. ) [J]. Journal of Research, 2014, 51(3/4): 234−238. [19] SINGH N, PAL N, MAHAJAN G, et al. Rice grain and starch properties: Effects of nitrogen fertilizer application [J]. Carbohydrate Polymers, 2011, 86(1): 219−225. doi: 10.1016/j.carbpol.2011.04.039 [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [21] 兰华雄, 王建明, 杨居钿. 水稻高产气象生态分析 [J]. 亚热带农业研究, 2005, 1(2):50−54.LAN H X, WANG J M, YANG J D. Analysis of meteorological ecology for high yield of rice [J]. Subtropical Agriculture Research, 2005, 1(2): 50−54.(in Chinese) [22] 熊洪, 唐玉明, 任道群, 等. 不同土壤类型、不同气候条件与稻米品质的关系研究 [J]. 西南农业学报, 2004, 17(4):445−449. doi: 10.3969/j.issn.1001-4829.2004.04.009XIONG H, TANG Y M, REN D Q, et al. Studies on relationships between different soil types and climate condition and grain yield and quality of rice [J]. Southwest China Journal of Agricultural Sciences, 2004, 17(4): 445−449.(in Chinese) doi: 10.3969/j.issn.1001-4829.2004.04.009 [23] PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971−9975. doi: 10.1073/pnas.0403720101 [24] 姜丽霞, 吕佳佳, 王晾晾, 等. 黑龙江省气温日较差的变化趋势及其与作物产量的关系 [J]. 中国农业气象, 2013, 34(2):179−185. doi: 10.3969/j.issn.1000-6362.2013.02.008JIANG L X, LYU J J, WANG L L, et al. Variation of diurnal temperature range and its relationship with crop yield in Heilongjiang Province [J]. Chinese Journal of Agrometeorology, 2013, 34(2): 179−185.(in Chinese) doi: 10.3969/j.issn.1000-6362.2013.02.008 [25] 李训贞, 梁满中, 周广洽, 等. 水稻开花时的环境条件对花粉活力和结实的影响 [J]. 作物学报, 2002, 28(3):417−420. doi: 10.3321/j.issn:0496-3490.2002.03.026LI X Z, LIANG M Z, ZHOU G Q, et al. Effect of environment condition on pollen vigor and seed set during flowing time of rice [J]. Acta Agronomica Sinica, 2002, 28(3): 417−420.(in Chinese) doi: 10.3321/j.issn:0496-3490.2002.03.026 [26] 平立燕, 龙成, 谭文丽, 等. 三都县水稻施肥效应的土壤类型和区域差异分析 [J]. 现代农业科技, 2013(7):29−30,32. doi: 10.3969/j.issn.1007-5739.2013.07.014PING L Y, LONG C, TAN W L, et al. Effects of soil type and regional difference on fertilization effect in Sandu County [J]. Modern Agricultural Science and Technology, 2013(7): 29−30,32.(in Chinese) doi: 10.3969/j.issn.1007-5739.2013.07.014 [27] 刘娟, 张乃明, 张淑香. 潮土磷素累积流失风险及环境阈值 [J]. 农业工程学报, 2020, 36(20):8−16. doi: 10.11975/j.issn.1002-6819.2020.20.002LIU J, ZHANG N M, ZHANG S X. Accumulative loss risk of phosphorus and its environmental threshold in fluvo-aquic soil [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 8−16.(in Chinese) doi: 10.11975/j.issn.1002-6819.2020.20.002 [28] 江琳琳, 赵晗舒, 杨武, 等. 水稻氮利用效率评价及其与产量性状的关系 [J]. 沈阳农业大学学报, 2019, 50(6):641−647.JIANG L L, ZHAO H S, YANG W, et al. Evaluation of nitrogen utilization efficiency and its relationship with yield characters in rice [J]. Journal of Shenyang Agricultural University, 2019, 50(6): 641−647.(in Chinese) [29] CHEN G, ZHAO G H, CHENG W D, et al. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields [J]. Science of the Total Environment, 2020, 741: 140433. doi: 10.1016/j.scitotenv.2020.140433 [30] 林晶晶, 李刚华, 薛利红, 等. 15N示踪的水稻氮肥利用率细分 [J]. 作物学报, 2014, 40(8):1424−1434. doi: 10.3724/SP.J.1006.2014.01424LIN J J, LI G H, XUE L H, et al. Subdivision of nitrogen use efficiency of rice based on 15N tracer [J]. Acta Agronomica Sinica, 2014, 40(8): 1424−1434.(in Chinese) doi: 10.3724/SP.J.1006.2014.01424 [31] 张亦涛, 王洪媛, 刘申, 等. 氮肥农学效应与环境效应国际研究发展态势 [J]. 生态学报, 2016, 36(15):4594−4608.ZHANG Y T, WANG H Y, LIU S, et al. A bibliometrical analysis of status and trends of international researches on the agronomic and environmental effects of nitrogen application to farmland [J]. Acta Ecologica Sinica, 2016, 36(15): 4594−4608.(in Chinese) [32] 朱兆良, 张绍林, 徐银华. 平均适宜施氮量的含义 [J]. 土壤, 1986, 18(6):316−317.ZHU Z L, ZHANG S L, XU Y H. Meaning of average suitable nitrogen application [J]. Soils, 1986, 18(6): 316−317.(in Chinese) [33] 张智, 王伟妮, 李昆, 等. 四川省不同区域水稻氮肥施用效果研究 [J]. 土壤学报, 2015, 52(1):234−241. doi: 10.11766/trxb201311060519ZHANG Z, WANG W N, LI K, et al. Effects of nitrogen fertilization on rice in different regions of Sichuan Province [J]. Acta Pedologica Sinica, 2015, 52(1): 234−241.(in Chinese) doi: 10.11766/trxb201311060519 [34] NORMAN R, ROBERTS T, SLATON N, et al. Nitrogen uptake efficiency of a hybrid compared with a conventional, pure-line rice cultivar [J]. Soil Science Society of America Journal, 2013, 77(4): 1235−1240. doi: 10.2136/sssaj2013.01.0015 [35] FAN X R, TANG Z, TAN Y W, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields [J]. PNAS, 2016, 113(26): 7118−7123. doi: 10.1073/pnas.1525184113