• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐渍化胁迫下接种不同丛枝菌根真菌对番茄耐盐性的影响

曹磊 李逸雯 凌康杰 王婧绮 鄢蕙 牟丽娟 江晋岚 方芳 刘瑞强

曹磊,李逸雯,凌康杰,等. 盐渍化胁迫下接种不同丛枝菌根真菌对番茄耐盐性的影响 [J]. 福建农业学报,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008
引用本文: 曹磊,李逸雯,凌康杰,等. 盐渍化胁迫下接种不同丛枝菌根真菌对番茄耐盐性的影响 [J]. 福建农业学报,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008
CAO L, LI Y W, LING K J, et al. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008
Citation: CAO L, LI Y W, LING K J, et al. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008

盐渍化胁迫下接种不同丛枝菌根真菌对番茄耐盐性的影响

doi: 10.19303/j.issn.1008-0384.2022.002.008
基金项目: 国家自然科学基金项目(32001224);浙江省公益技术应用研究计划项目(LGN19C140009)
详细信息
    作者简介:

    曹磊(1995−),男,硕士研究生,主要从事植物水分生理研究(E-mail:1648699734@qq.com

    通讯作者:

    方芳(1969−),女,高级实验师,主要从事植物生理学研究(E-mail:sky85@zjnu.cn

  • 中图分类号: S 641.2

Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants

  • 摘要:   目的  研究不同丛枝菌根真菌(AMF)对番茄植株生长和抗盐胁迫效应,探究筛选出能够延缓盐分对番茄生理活性的抑制,提升植株光合碳同化能力和耐盐性能力的最佳AMF真菌。  方法  针对土壤盐渍化对番茄的不良效应,通过土培法对番茄植株进行不同盐浓度(0、100 mmol·L−1)处理,经初筛得到摩西(F.m)、根内(R.i)两种丛枝菌根真菌作为接种菌剂,从生理及光合2个角度探究对盐胁迫下接种不同AMF侵染对番茄的生长状况的影响。  结果  盐胁迫下番茄抗氧化酶系活性,包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、丙二醛(MDA)含量及脯氨酸(Pro)含量分别提高了47.4%、32.9%、35.7%、61.8%、6%。菌根侵染率、光合强度降低了27.8%和54.6%。接种AMF能有效增强宿主抗盐性,其中F.m接种后番茄的脯氨酸含量降低60.7%,降低幅度是接种R.i处理的2.2倍。F.m接种后番茄的净光合速率(Pn)、气孔导度(Gs)分别提高49.1%、35.4%,增幅是接种R.i处理的1.4倍。同时,接种AMF能减轻盐毒对光合关键酶的损伤,其中接种F.m后番茄RuBP羧化酶最大增长率可达31.2%,是接种R.i真菌处理的1.1倍。  结论  AMF可延缓盐分对番茄生理活性的抑制,提升植株光合碳同化能力和耐盐性,其中接种摩西(F.m)真菌对植物促生作用显著优于根内(R.i)真菌。
  • 图  1  不同AMF对盐胁迫下番茄菌根侵染率的影响

    Figure  1.  Effects of AMF on mycorrhizal infection rate of tomato plants under salt stress

    图  2  盐胁迫下AMF处理后对番茄叶绿素荧光参数和光合气体参数影响

    Figure  2.  Effects of AMF-treatment on chlorophyll fluorescence and photosynthetic gas parameters of tomato plants under salt stress

    图  3  盐胁迫下AMF处理后对番茄FBPase活性与RuBP酶活性的影响

    Figure  3.  Effects of AMF-treatment on FBPase and RuBP activities of tomato plants under salt stress

    表  1  不同AMF对盐胁迫下番茄菌根依赖性及侵染密度的影响

    Table  1.   Effects of AMF on mycorrhizal dependence and infection density of tomato plants under salt stress

    项目  
    Items  
    处理组
    Treatments
    F.mR.iC.eD.v
    菌根依赖性
    Mycorrhizal
    dependence/%
    0 mmol·L−154.79±0.09 a50.87±0.01 ab29.07±0.01 c49.05±0.02 b
    100 mmol·L−1129.06±0.11 a128.09±0.24 a111.37±0.15 b127.08±0.33 ab
    侵染密度
    Infection
    density/%
    0 mmol·L−14.01±0.24 a4.02±0.11 ab0.76±0.09 c3.01±0.07 b
    100 mmol·L−10.79±0.01 a0.82±0.03 b0.13±0.02 c0.80±0.04 b
    注:同项同行数据后不同字母表示差异显著( P <0.05),下同。
    Note: Values followed by different lowercase letters within a column indicate significant difference at 5% level, the same as below.
    下载: 导出CSV

    表  2  盐胁迫下AMF处理后番茄抗氧化酶系统的变化

    Table  2.   Changes on antioxidant enzymes of tomato plants under AMF-treatment against salt stress

    测定指标
    Measured
    indicators
    处理组
    Treatments
    时间 Times/d
    153045
    SOD/
    (U·g−1·min−1
    CK 04.76±0.24 e5.09±0.15 d4.74±0.19 e
    R.i 05.34±0.08 e5.49±0.12 cd5.55±0.08 d
    F.m 06.17±0.26 d6.30±0.26 c6.17±0.23 c
    CK 1007.29±0.28 c9.73±0.43 b7.05±0.10 b
    R.i 1008.37±0.16 b10.58±0.41 b7.41±0.40 b
    F.m 1009.99±0.34 a12.21±0.30 a8.46±0.17 a
    POD/
    (U·g−1·min−1
    CK 073.61±4.37 d74.91±3.64 d85.30±3.67 f
    R.i 083.00±2.33 dc137.14±3.34 c132.22±4.69 e
    F.m 084.31±1.63 c146.53±4.69 c148.79±3.18 d
    CK 100273.11±2.73 b422.00±3.93 b565.50±4.13 c
    R.i 100347.73±2.71 a424.44±2.48 b614.80±3.84 b
    F.m 100355.44±3.83 a468.63±4.00 a649.68±5.54 a
    CAT/
    (U·g−1·min−1
    CK 033.13±1.11 d35.17±1.06 d37.13±1.32 e
    R.i 037.86±2.15 cd37.79±1.69 d43.54±1.33 d
    F.m 040.32±1.93 c44.72±1.51 c49.28±1.23 d
    CK 10048.74±1.76 b74.68±1.79 b84.25±2.28 c
    R.i 10054.25±1.34 b78.19±1.47 b93.07±2.80 b
    F.m 10061.14±2.63 a88.19±1.98 a99.25±1.68 a
    下载: 导出CSV

    表  3  盐胁迫下AMF处理后脯氨酸及MDA含量的变化

    Table  3.   Proline and MDA contents after AMF-treatment under salt stress

    测定指标
    Measured
    indicators
    处理组
    Treatments
    时间 Times/d
    153045
    丙二醛含量
    MDA content/
    (mmol·g−1
    CK 0 3.94±0.14 d 6.81±0.13 d 7.25±0.18 d
    CK 100 7.28±0.23 a 10.44±0.15 a 17.68±0.38 a
    F.m 0 3.91±0.15 e 6.76±0.10 d 6.88±0.20 d
    F.m 100 4.56±0.15 c 8.96±0.19 c 12.37±0.34 c
    R.i 0 3.93±0.10 de 6.79±0.16 d 7.16±0.16 d
    R.i 100 6.02±0.17b 9.59±0.21 b 14.12±0.29 b
    脯氨酸含量
    Pro content/
    (μg·g−1
    CK 0 42.41±1.58 d 6.81±0.13 cd 7.25±0.18 bc
    CK 100 35.82±2.06 d 10.44±0.15 d 17.68±0.38 d
    F.m 0 41.00±3.55 d 6.76±01.0 d 6.88±0.20 c
    F.m 100 228.57±4.33 a 8.96±0.19 a 12.37±0.34 a
    R.i 0 118.06±4.18 c 6.79±0.16 c 7.16±0.16 d
    R.i 100 181.43±3.32 b 9.59±0.21 b 14.12±0.29 b
    下载: 导出CSV

    表  4  不同处理组番茄盐害指数的影响变化

    Table  4.   Changes on salt injury index of tomato plants under treatments

    处理组
    Treatments
    盐害指数
    Salt injury index
    CK70.26±2.23 a
    F.m35.63±5.15 c
    R.i51.23±3.33 b
    下载: 导出CSV
  • [1] 解雪峰, 濮励杰, 沈洪运,等 滨海重度盐碱地改良土壤盐渍化动态特征及预测[J/OL]. 土壤学报: 1-13[2022-02-22]. http://kns.cnki.net/kcms/detail/32.1119.P.20210928.0907.004.html.

    XIE X F, PU L J, SHEN H Y, et al. Dynamic characteristics and prediction of soil salinization in coastal severely saline-alkali land[J/OL]. Acta Pedologica Sinica: 1-13[2022-02-22]. http://kns.cnki.net/kcms/detail/32.1119.P.20210928.0907.004.html.
    [2] ABDEL LATEF A A H, HE C X. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress [J]. Scientia Horticulturae, 2011, 127(3): 228−233. doi: 10.1016/j.scienta.2010.09.020
    [3] KITAMURA Y, YANO T, HONNA T, et al. Causes of farmland salinization and remedial measures in the Aral Sea Basin—Research on water management to prevent secondary salinization in rice-based cropping system in arid land [J]. Agricultural Water Management, 2006, 85(1/2): 1−14.
    [4] ATTIA H, KARRAY N, RABHI M, et al. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana [J]. Acta Physiologiae Plantarum, 2008, 30(5): 723−727. doi: 10.1007/s11738-008-0172-4
    [5] 郭兆晖. 生态文明建设“十四五”规划与二〇三五远景目标 [J]. 领导科学论坛, 2020(20):3−32.

    GUO Z H. The 14th five-year plan of ecological civilization construction and the long-term goal of 2035 [J]. The Forum of Leadership Science, 2020(20): 3−32.(in Chinese)
    [6] 徐钰德, 刘子金, 程慧, 等. 基于HYDRUS-3D的畦灌模式下田间水盐运移模拟 [J]. 水利水电技术(中英文), 2021(7):14−22.

    XU Y D, LIU Z J, CHENG H, et al. Simulation of water and salt transportation under border irrigation in field scale based on HYDRUS-3D [J]. Water Resources and Hydropower Engineering, 2021(7): 14−22.(in Chinese)
    [7] 潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制 [J]. 地球科学进展, 2018, 33(4):361−372. doi: 10.11867/j.issn.1001-8166.2018.04.0361

    PAN J, HUANG C H, LUO J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants [J]. Advances in Earth Science, 2018, 33(4): 361−372.(in Chinese) doi: 10.11867/j.issn.1001-8166.2018.04.0361
    [8] ZHANG X H, HAN C Z, GAO H M, et al. Comparative transcriptome analysis of the garden Asparagus (Asparagus officinalis L. ) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress [J]. Plant Physiology and Biochemistry, 2019, 141: 20−29. doi: 10.1016/j.plaphy.2019.05.013
    [9] 李胜, 姜丽娜, 宋洁蕾, 等. 幼套球囊霉接种量对紫茎泽兰生长的影响 [J]. 云南农业大学学报(自然科学), 2019, 34(2):193−199.

    LI S, JIANG L N, SONG J L, et al. Effects of arbuscular mycorrhizal fungi, Glomus etunicatum inoculation and different inoculum concentrations on the growth of Ageratina adenophora sprengel [J]. Journal of Yunnan Agricultural University, 2019, 34(2): 193−199.(in Chinese)
    [10] 周霞, 崔明, 秦永胜, 等. 扩繁条件对3种丛枝菌根真菌(AMF)的影响 [J]. 中国农学通报, 2012, 28(12):83−87. doi: 10.11924/j.issn.1000-6850.2011-3888

    ZHOU X, CUI M, QIN Y S, et al. The effects of the propagation condition on the three kinds of arbuscular mycorrhizal fungi [J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 83−87.(in Chinese) doi: 10.11924/j.issn.1000-6850.2011-3888
    [11] SMITH S E, JAKOBSEN I, GRØNLUND M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition [J]. Plant Physiology, 2011, 156(3): 1050−1057. doi: 10.1104/pp.111.174581
    [12] 曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究 [J]. 灌溉排水学报, 2019(2):29−35.

    CAO H L, DING R S, XUE F L. Growth and yield of tomato as impacted by salinity stress [J]. Journal of Irrigation and Drainage, 2019(2): 29−35.(in Chinese)
    [13] 雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用 [J]. 西北植物学报, 2013, 33(1):154−161. doi: 10.3969/j.issn.1000-4025.2013.01.024

    LEI Y, WU S L, HAO Z P, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects [J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1): 154−161.(in Chinese) doi: 10.3969/j.issn.1000-4025.2013.01.024
    [14] 李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016.
    [15] SHABNAM N, TRIPATHI I, SHARMILA P, et al. A rapid, ideal, and eco-friendlier protocol for quantifying proline [J]. Protoplasma, 2016, 253(6): 1577−1582. doi: 10.1007/s00709-015-0910-6
    [16] 王仁杰, 朱凡, 梁惠子, 等. 重金属Mn对苦楝叶片光系统性能的影响 [J]. 生态学报, 2020, 40(6):2019−2027.

    WANG R J, ZHU F, LIANG H Z, et al. Effects of Manganese (Mn) on the performances of photosystems Ⅰ and Ⅱ in Melia azedarach young plant [J]. Acta Ecologica Sinica, 2020, 40(6): 2019−2027.(in Chinese)
    [17] TORRES R, DIZ V E, LAGORIO M G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts [J]. Photochemical & Photobiological Sciences, 2018, 17(4): 505−516.
    [18] 李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响 [J]. 园艺学报, 2016, 43(10):2012−2020.

    LI X, SANG Q Q, SHU S, et al. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light [J]. Acta Horticulturae Sinica, 2016, 43(10): 2012−2020.(in Chinese)
    [19] 杨凤军, 高凤, 韩昱, 等. 不同基因型番茄幼苗期耐盐性分析 [J]. 黑龙江八一农垦大学学报, 2018, 30(4):12−17. doi: 10.3969/j.issn.1002-2090.2018.04.003

    YANG F J, GAO F, HAN Y, et al. Analysis of salt tolerance of different genotypic tomato seedlings [J]. Journal of Heilongjiang August First Land Reclamation University, 2018, 30(4): 12−17.(in Chinese) doi: 10.3969/j.issn.1002-2090.2018.04.003
    [20] NEMEC S. Response of six citrus root-stocks to three species of Glomus, a mycorrhizalfungus [J]. Proc Fla State Hort Sci, 1978, 9(1): 10−14.
    [21] 罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理 [J]. 生态学报, 2013, 33(13):3898−3906.

    LUO Q Y, WANG X J, LIN S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi [J]. Chinese Journal of Plant Ecology, 2013, 33(13): 3898−3906.(in Chinese)
    [22] 何新华, 段英华, 陈应龙, 等. 中国菌根研究60年: 过去、现在和将来 [J]. 中国科学(生命科学), 2012, 42(6):431−454.

    HE X H, DUAN Y H, CHEN Y L, et al. A 60-year journey of mycorrhizal research in China: Past, present and future directions [J]. Science in China (Series C), 2012, 42(6): 431−454.(in Chinese)
    [23] WU Q S, ZOU Y N, HE X H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of Citrus seedlings under salt stress [J]. Acta Physiologiae Plantarum, 2010, 32(2): 297−304. doi: 10.1007/s11738-009-0407-z
    [24] 曹翠玲, 张玖玲, 杨向娜, 等. 金银花根系VAM真菌侵染过程观察 [J]. 西北植物学报, 2016, 36(3):479−485. doi: 10.7606/j.issn.1000-4025.2016.03.0479

    CAO C L, ZHANG J L, YANG X N, et al. Investigation of the mycorrhiza forming in honeysuckle infected by vesicular arbuscular mycorrhizal(VAM) [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3): 479−485.(in Chinese) doi: 10.7606/j.issn.1000-4025.2016.03.0479
    [25] LOTFI R, PESSARAKLI M, GHARAVI-KOUCHEBAGH P, et al. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity [J]. The Crop Journal, 2015, 3(5): 434−439. doi: 10.1016/j.cj.2015.05.006
    [26] HE Z Q, HE C X, ZHANG Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress [J]. Colloids and Surfaces B:Biointerfaces, 2007, 59(2): 128−133. doi: 10.1016/j.colsurfb.2007.04.023
    [27] GUO S X, CHEN D M, RUNJIN L. Effects of arbuscular mycorrhizal fungi on antioxidant enzyme activity in peony seedlings under salt stress [J]. Acta Horticulturae Sinica, 2010, 37(11): 1796−1802.
    [28] KAUR G, ASTHIR B. Proline: a key player in plant abiotic stress tolerance [J]. Biologia Plantarum, 2015, 59(4): 609−619. doi: 10.1007/s10535-015-0549-3
    [29] CAO D, CHEN S, HUANG Y, et al. Effects of artificial aging on physiological characteristics of rice seeds with different dormancy characteristics [J]. Agricultural Biotechnology, 2019, 8(1): 56−60.
    [30] CHANDRASEKARAN M, BOUGHATTAS S, HU S J, et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress [J]. Mycorrhiza, 2014, 24(8): 611−625. doi: 10.1007/s00572-014-0582-7
    [31] 冯固, 白灯莎, 杨茂秋, 等. 盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应 [J]. 应用生态学报, 1999, 10(1):79−82. doi: 10.3321/j.issn:1001-9332.1999.01.021

    FENG G, BAI D S, YANG M Q, et al. Effects of salt stress on VA mycorrhizal formation and inoculation of VAM fungi on plant salt tolerance [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 79−82.(in Chinese) doi: 10.3321/j.issn:1001-9332.1999.01.021
    [32] 邹晖, 林江波, 戴艺民, 等. 干旱胁迫下内生真菌对铁皮石斛抗旱性的影响 [J]. 北方园艺, 2020(6):119−125.

    ZOU H, LIN J B, DAI Y M, et al. Effects of endophyte on the drought resistance of Dendrobium officinale under drought stress [J]. Northern Horticulture, 2020(6): 119−125.(in Chinese)
    [33] 吴秀红, 戚厚芸, 孙婷, 等. 内生菌根菌剂对水稻秧苗生长及生理特性的影响 [J]. 江苏农业科学, 2018, 46(21):65−68.

    WU X H, QI H Y, SUN T, et al. Effects of endogenous mycorrhizal fungi inoculant on growth and physiological characteristics of rice seedlings [J]. Jiangsu Agricultural Sciences, 2018, 46(21): 65−68.(in Chinese)
    [34] MA H, WANG A, ZHANG M H, et al. Compared the physiological response of two petroleum-tolerant contrasting plants to petroleum stress [J]. International Journal of Phytoremediation, 2018, 20(10): 1043−1048. doi: 10.1080/15226514.2018.1460303
    [35] TEH C Y, SHAHARUDDIN N A, HO C L, et al. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress [J]. Acta Physiologiae Plantarum, 2016, 38(6): 1−10.
    [36] ELHINDI K M, EL-DIN A S, ELGORBAN A M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L. ) [J]. Saudi Journal of Biological Sciences, 2017, 24(1): 170−179. doi: 10.1016/j.sjbs.2016.02.010
    [37] 张斌斌, 许建兰, 蔡志翔, 等. 淹水胁迫下2个李砧木品种光合特性变化及其与环境因子的关系 [J]. 南京农业大学学报, 2013(5):39−44.

    ZHANG B B, XU J L, CAI Z X, et al. Relationship between photosynthetic characteristics and environmental factors in leaves of two plum rootstock varieties under waterlogging stress [J]. Journal of Nanjing Agricultural University, 2013(5): 39−44.(in Chinese)
    [38] LYSENKO V S, VARDUNY T V, KOSENKO P O, et al. Video registration as a method for studying kinetic parameters of chlorophyll fluorescence in Ficus benjamina leaves [J]. Russian Journal of Plant Physiology, 2014, 61(3): 419−425. doi: 10.1134/S102144371403008X
    [39] MAURO R P, OCCHIPINTI A, LONGO A M G, et al. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover [J]. Journal of Agronomy and Crop Science, 2011, 197(1): 57−66. doi: 10.1111/j.1439-037X.2010.00436.x
    [40] 朱先灿, 宋凤斌, 徐洪文. 低温胁迫下丛枝菌根真菌对玉米光合特性的影响 [J]. 应用生态学报, 2010, 21(2):470−475.

    ZHU X C, SONG F B, XU H W. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress [J]. Chinese Journal of Applied Ecology, 2010, 21(2): 470−475.(in Chinese)
    [41] 刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响 [J]. 生态学报, 2019, 39(8):2833−2841.

    LIU J X, OU X B, WANG J C. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress [J]. Acta Ecologica Sinica, 2019, 39(8): 2833−2841.(in Chinese)
    [42] 刘领, 李冬, 马宜林, 等. 外源褪黑素对干旱胁迫下烤烟幼苗生长的缓解效应与生理机制研究 [J]. 草业学报, 2019, 28(8):95−105. doi: 10.11686/cyxb2019098

    LIU L, LI D, MA Y L, et al. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated with exogenous melatonin [J]. Acta Prataculturae Sinica, 2019, 28(8): 95−105.(in Chinese) doi: 10.11686/cyxb2019098
    [43] 张淑彬, 纪晶晶, 王幼珊, 等. 内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选 [J]. 生态学报, 2009, 29(7):3729−3736. doi: 10.3321/j.issn:1000-0933.2009.07.034

    ZHANG S B, JI J J, WANG Y S, et al. The screening of arbuscular mycorrhizal fungi with high ecological adaptations in backfill soil of open pit mining area in Inner Mongolia [J]. Acta Ecologica Sinica, 2009, 29(7): 3729−3736.(in Chinese) doi: 10.3321/j.issn:1000-0933.2009.07.034
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  109
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-02-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回