• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同干燥方式对细菌纤维素复水性能的影响

郑梅霞 肖荣凤 陈梅春 陈燕萍 朱育菁

郑梅霞,肖荣凤,陈梅春,等. 不同干燥方式对细菌纤维素复水性能的影响 [J]. 福建农业学报,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015
引用本文: 郑梅霞,肖荣凤,陈梅春,等. 不同干燥方式对细菌纤维素复水性能的影响 [J]. 福建农业学报,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015
ZHENG M X, XIAO R F, CHEN M C, et al. Effect of Drying Methods on Rehydration of Bacterial Cellulose [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015
Citation: ZHENG M X, XIAO R F, CHEN M C, et al. Effect of Drying Methods on Rehydration of Bacterial Cellulose [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015

不同干燥方式对细菌纤维素复水性能的影响

doi: 10.19303/j.issn.1008-0384.2021.12.015
基金项目: 福建省科技计划公益类专项(2019R1034-7)
详细信息
    作者简介:

    郑梅霞(1986−),女,硕士,助理研究员,研究方向:农业生物资源保护与利用(E-mail:zhengmeixia2005@163.com)

    通讯作者:

    朱育菁(1972−),女,博士,研究员,研究方向:农业生物资源保护与利用(E-mail:zyjingfz@163.com

  • 中图分类号: TS 201.1

Effect of Drying Methods on Rehydration of Bacterial Cellulose

  • 摘要:   目的  探究干燥方式对细菌纤维素(Bacterial cellulose,BC)复水性能的影响。  方法  采用热风干燥、微波真空干燥和真空冷冻干燥3种干燥方式干燥BC,比较不同干燥方式对BC的溶胀率和复水量的影响,并对BC微观结构进行表征。  结果  不同干燥方式会影响BC结构,引起复水性能变化。与未干燥的BC相比,冷冻干燥的BC复水率达44.79%,复水性能较其他干燥方式好;热风干燥的BC的复水性能次之;微波真空干燥的BC的复水性能最差。电子扫描电镜结果分析表明,冷冻干燥的BC纤维丝排列疏松,较好地保持了BC的表面结构,热风干燥和微波真空干燥的BC纤维排列致密。从复水性能来看,冷冻干燥方法优于2种干燥方法,且在−80 ℃冷冻后进行冷冻干燥的细菌纤维素的复水性能最好。动力学分析表明,细菌纤维素复水过程遵循Fickian扩散定律,BC的网络结构保持的越完整,材料的扩散系数越高,对应的复水性能也越好。  结论  冷冻干燥的复水性能最好。
  • 图  1  不同烘干方式烘干后的细菌纤维素的外观形态

    注:a:70 ℃热风干燥;b:50 ℃热风干燥;c:微波真空干燥;d:−20 ℃预冷真空冷冻干燥;e:−80 ℃预冷真空冷冻干燥。图2同。

    Figure  1.  Appearances of dried BC samples

    Note: a: BC-DD70: BC dehydrated by 70 ℃ hot air drying; b: BC-DD50: BC dehydrated by 50 ℃ hot air drying; c: BC-MVD: BC dehydrated by microwave-vacuum drying; d: BC-FD20: BC dehydrated by −20 ℃ freeze-drying; e: BC-FD80: BC dehydrated by −80 ℃ freeze-drying. The same as Fig.2.

    图  2  扫描电子显微镜下的细菌纤维素

    Figure  2.  SEM micrographs of dried BC samples by various dehydration methods

    图  3  细菌纤维素的溶胀率

    Figure  3.  Swelling rate of dried BC samples

    图  4  细菌纤维素吸水后表观效果

    注:a:70 ℃热风干燥;b:50 ℃热风干燥;c:微波真空干燥;d:−20 ℃预冷真空冷冻干燥;e:−80 ℃预冷真空冷冻干燥;f:未干燥(对照)。

    Figure  4.  Morphology of rehydrated BC samples

    Note: a: BC-DD70: BC dehydrated by 70 ℃ hot air drying; b: BC-DD50: BC dehydrated by 50 ℃ hot air drying; c: BC-MVD: BC dehydrated by microwave-vacuum drying; d: BC-FD20: BC dehydrated by −20 ℃ freeze-drying; e: BC-FD80: BC dehydrated by −80 ℃ freeze-drying; f: untreated (CK).

    图  5  拟合的斜率

    Figure  5.  Water absorption rate after fitting

    表  1  不同干燥方法的细菌纤维素的吸水性能

    Table  1.   Water absorption of dried BC samples

    样品
    Samples
    每克干细菌纤维素的复水量
    Rehydration mass of
    per gram of dry bacterial
    cellulose/g
    溶胀率
    Swelling ratio/%
    对照 Contrast 75.11±0.11 a 7411.54±11.00 a
    70 ℃热风干燥
    BC-DD70
    18.12±0.18 e 1711.93±18.07 e
    50 ℃热风干燥
    BC-DD50
    33.74±0.24 d 3274.10±24.10 d
    微波真空干燥
    BC-MVD
    8.05±0.15 f 704.49±15.23 f
    −20 ℃预冷真空冷冻干燥
    BC-FD20
    42.63±0.13 c 4162.74±12.74 c
    −80 ℃预冷真空冷冻干燥
    BC-FD80
    43.79±0.19 b 4279.34±19.34 b
    注:表中同列数据后不同小写字母表示差异达显著水平(P<0.05)。Note: The same column of date in the table followed by lowercase letters are significantly different (P<0.05).
    下载: 导出CSV

    表  2  不同干燥方式细菌纤维素的吸水溶胀过程的溶胀特征指数

    Table  2.   Rehydration indices of BC samples dried by different methods

    不同干燥方式
    Different drying species
    70 ℃ 热风干燥
    BC-DD70
    50 ℃ 热风干燥
    BC-DD50
    微波真空干燥
    BC-MVD
    −20 ℃ 预冷真空冷冻干燥
    BC-FD20
    −80 ℃ 预冷真空冷冻干燥
    BC-FD80
    溶胀特征指数 n0.44000.49420.31730.36100.1245
    下载: 导出CSV

    表  3  不同干燥方式细菌纤维素的吸水溶胀过程的扩散系数

    Table  3.   Diffusion coefficients of dried BC samples upon rehydration

    不同干燥方式
    Different drying species
    70 ℃ 热风干燥
    BC-DD70
    50 ℃ 热风干燥
    BC-DD50
    微波真空干燥
    BC-MVD
    −20 ℃ 预冷真空冷冻干燥
    BC-FD20
    −80 ℃ 预冷真空冷冻干燥
    BC-FD80
    扩散系数 D(m2.h10.05120.29770.00131.54900.5749
    下载: 导出CSV
  • [1] YANG Y, JIA J J, XING J R, et al. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26 [J]. Carbohydrate Polymers, 2013, 92(2): 2012−2017. doi: 10.1016/j.carbpol.2012.11.065
    [2] 冯劲, 施庆珊, 冯静, 等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29(9):2225−2229,2101.

    FENG J, SHI Q S, FENG J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Modern Food Science and Technology, 2013, 29(9): 2225−2229,2101.(in Chinese)
    [3] 杨晨, 崔秋艳, 郑裕东, 等. 纳米细菌纤维素的不同脱水过程对结构性能的影响及再吸水动力学[J]. 高分子材料科学与工程, 2013, 29(10): 50-54

    YANG C, CUI Q Y, ZHENG Y D, et al. Effect of different dehydration methods on structure and property of nano bacterial cellulose and dynamics analysis of their water reabsorption[J]. Polymer Materials Science & Engineering, 2013, 29(10): 50-54. (in Chinese)
    [4] MIKKELSEN D, FLANAGAN B M, DYKES G A, et al. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 [J]. Journal of Applied Microbiology, 2009, 107(2): 576−583. doi: 10.1111/j.1365-2672.2009.04226.x
    [5] MACHADO R T A, GUTIERREZ J, TERCJAK A, et al. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production [J]. Carbohydrate Polymers, 2016, 152: 841−849. doi: 10.1016/j.carbpol.2016.06.049
    [6] LAUS M C, VAN BRUSSEL A A N, KIJNE J W. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs [J]. Molecular Plant-Microbe Interactions®, 2005, 18(6): 533−538.
    [7] MATTHYSSE A G, THOMAS D L, WHITE A R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens [J]. Journal of Bacteriology, 1995, 177(4): 1076−1081. doi: 10.1128/jb.177.4.1076-1081.1995
    [8] LIN D H, LIU Z, SHEN R, et al. Bacterial cellulose in food industry: Current research and future prospects [J]. International Journal of Biological Macromolecules, 2020, 158: 1007−1019. doi: 10.1016/j.ijbiomac.2020.04.230
    [9] 周伶俐, 孙东平, 吴清杭, 等. 不同培养方式对细菌纤维素产量和结构性质的影响 [J]. 微生物学报, 2007, 47(5):914−917. doi: 10.3321/j.issn:0001-6209.2007.05.032

    ZHOU L L, SUN D P, WU Q H, et al. Influence of culture mode on bacterial cellulose production and its structure and property [J]. Acta Microbiologica Sinica, 2007, 47(5): 914−917.(in Chinese) doi: 10.3321/j.issn:0001-6209.2007.05.032
    [10] 张少瑞, 陈琳, 钟春燕, 等. 木葡糖酸醋杆菌株型对细菌纤维素产量与性能的影响 [J]. 生物过程, 2016, 6(1):8−16. doi: 10.12677/BP.2016.61002

    ZHANG S R, CHEN L, ZHONG C Y, et al. Effects of different Gluconacetobacter xylinus strains on yield and properties of bacterial cellulose [J]. Bioprocess, 2016, 6(1): 8−16.(in Chinese) doi: 10.12677/BP.2016.61002
    [11] 罗仓学, 张岢薇, 丁勇. 干燥方法对细菌纤维素复水性能的影响[J]. 陕西科技大学学报, 2017, 35(6): 120-124, 139

    LUO C X, ZHANG K W, DING Y. Influence of drying methods on rehydration quality of bacterial cellulose[J]. Journal of Shaanxi University of Science & Technology, 2017, 35(6): 120-124, 139. (in Chinese)
    [12] 陈建福, 汪少芸, 林梅西. 海鲜菇热风干燥特性及其动力学研究 [J]. 食品工业科技, 2020, 41(3):69−73.

    CHEN J F, WANG S Y, LIN M X. Hot air drying characteristics and kinetics of Hypsizygus marmoreus [J]. Science and Technology of Food Industry, 2020, 41(3): 69−73.(in Chinese)
    [13] 张增帅, 张宝善, 罗喻红, 等. 食品微波真空干燥研究进展 [J]. 食品工业科技, 2012, 33(23):393−397.

    ZHANG Z S, ZHANG B S, LUO Y H, et al. Research progress of microwave vacuum drying of food [J]. Science and Technology of Food Industry, 2012, 33(23): 393−397.(in Chinese)
    [14] 郭雷. 真空冷冻干燥技术在我国农产品加工中的应用 [J]. 现代农业科技, 2020(3):219−220. doi: 10.3969/j.issn.1007-5739.2020.03.130

    GUO L. Application of vacuum freeze drying technology in agricultural products processing in China [J]. Modern Agricultural Science and Technology, 2020(3): 219−220.(in Chinese) doi: 10.3969/j.issn.1007-5739.2020.03.130
    [15] LIN S B, HSU C P, CHEN L C, et al. Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose [J]. Food Hydrocolloids, 2009, 23(8): 2195−2203. doi: 10.1016/j.foodhyd.2009.05.011
    [16] CHEN H H, LIN S B, HSU C P, et al. Modifying bacterial cellulose with gelatin peptides for improved rehydration [J]. Cellulose, 2013, 20(4): 1967−1977. doi: 10.1007/s10570-013-9931-5
    [17] 丁勇, 邵明亮, 罗仓学, 等. 热风-冷冻复式干燥细菌纤维素工艺研究 [J]. 食品科技, 2016, 41(10):228−233.

    DING Y, SHAO M L, LUO C X, et al. Drying processes of bacteria cellulose by combined with hot air and freezing [J]. Food Science and Technology, 2016, 41(10): 228−233.(in Chinese)
    [18] 章斌, 丁心, 侯小桢, 等. 柠檬片的低温冻结与真空冷冻干燥工艺研究 [J]. 食品研究与开发, 2015, 36(22):86−90. doi: 10.3969/j.issn.1005-6521.2015.22.022

    ZHANG B, DING X, HOU X Z, et al. Research on the processing technology of freezing and vacuum drying of lemon slices [J]. Food Research and Development, 2015, 36(22): 86−90.(in Chinese) doi: 10.3969/j.issn.1005-6521.2015.22.022
    [19] GEORGE J, SAJEEVKUMAR V A, KUMAR R, et al. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose [J]. Journal of Applied Polymer Science, 2008, 108(3): 1845−1851. doi: 10.1002/app.27802
    [20] 赵莹婷, 王为为, 庄玮婧, 等. 莲子微波真空干燥特性及其微观结构的分形特征 [J]. 现代食品科技, 2016, 32(8):213−218.

    ZHAO Y T, WANG W W, ZHUANG W J, et al. Microwave vacuum drying characteristics of Lotus seeds and the fractal characteristics of their microstructures [J]. Modern Food Science and Technology, 2016, 32(8): 213−218.(in Chinese)
    [21] 李瑜, 许时婴. 大蒜干燥工艺的研究 [J]. 食品与发酵工业, 2004, 30(6):54−58. doi: 10.3321/j.issn:0253-990X.2004.06.013

    LI Y, XU S Y. Study on the technology of drying garlic [J]. Food and Fermentation Industries, 2004, 30(6): 54−58.(in Chinese) doi: 10.3321/j.issn:0253-990X.2004.06.013
    [22] WAN Y Z, LUO H L, HE F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites [J]. Composites Science and Technology, 2009, 69(7/8): 1212−1217.
    [23] HOSSEINI H, KOKABI M, MOUSAVI S M. Dynamic mechanical properties of bacterial cellulose nanofibres [J]. Iranian Polymer Journal, 2018, 27(6): 433−443. doi: 10.1007/s13726-018-0621-x
    [24] PAVALOIU R D, STOICA-GUZUN A, DOBRE T. Swelling studies of composite hydrogels based on bacterial cellulose and gelatin [J]. U. P. B. Sci. Bull. , Series B, 2015, 77(1): 53−62.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  192
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-08-09
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回