Inhibitory Effect of Lipopeptide Secreted by Bacillus Strain FJAT-2349 Against Anthracnose Pathogen
-
摘要:
目的 探究解淀粉芽胞杆菌FJAT-2349脂肽对枇杷采后炭疽病菌的抑制作用。 方法 通过平板抑菌试验和活体接种试验测定脂肽对枇杷采后炭疽病的抑制效果,通过电镜分析脂肽对枇杷炭疽病菌生长的抑制作用。 结果 芽胞杆菌菌株FJAT-2349能够有效抑制枇杷采后炭疽病菌的生长,抑制率达87.8%。该菌株产生的脂肽由iturin、fengycin和surfactin组成,其中fengycin为主要成分。该脂肽对枇杷炭疽病菌抑菌圈直径可达22 mm,且抑制效果呈剂量效应。电镜结果显示,解淀粉芽胞杆菌菌株FJAT-2349脂肽会导致菌丝肿胀变形、细胞壁变薄或消失、细胞内容物减少,从而影响枇杷炭疽病菌菌的正常生长。活体接种试验表明,该脂肽能够推迟枇杷炭疽病发病时间1 d,降低枇杷炭疽病的发病率,其中治愈性脂肽处理组和预防性脂肽处理组接种枇杷炭疽病菌第4天的相对防效分别为29.2%和72.7%,平均病斑直径为4.67~5.00 mm,低于清水对照组(6.89~7.25 mm),表明先用脂肽预防性处理枇杷,能更有效地降低枇杷采后炭疽病的发生率,减轻枇杷采后炭疽病的发病程度。 结论 解淀粉芽胞杆菌FJAT-2349脂肽能够有效地抑制枇杷采后炭疽病菌。 Abstract:Objective Inhibitory effect of lipopeptides secreted by Bacillus FJAT-2349 on the pathogen of anthracnose was investigated. Method Agar plate diffusion and pin-prick inoculation were used to determine the inhibition effect of the lipopeptides on the pathogen. The fungal morphology was observed under a scanning and a transmission electron microscope. Result The lipopeptide-producing B. amyloliquefaciens FJAT-2349 could effectively inhibit the growth of Colletotrichum acutatum with an inhibition rate of 87.8%. The lipopeptides were composed of mainly fengycin, but also iturin and surfactin. The diameter of inhibition zone on the agar plate by the lipopeptide against C. acutatum was up to 22 mm. The effect was dose-dependent. Under the electron microscopes, the fungal hyphae appeared deformed and cell walls damaged by the lipopeptides. Inoculation of FJAT-2349 on harvested loquats could delay the onset of anthracnose by one day. The in vivo tests showed that on the 4th day after inoculation the relative biocontrol efficacy on a curative-treatment group was 29.2% and 72.7% on a preventive-treatment group; and the average lesion diameter on the treatment groups was 4.67-5.00 mm, as opposed to the larger 6.89-7.25 mm of control. Conclusion The lipopeptides secreted by B. amyloliquefaciens FJAT-2349 could effectively inhibit the growth of Colletotrichum acutatum. -
Key words:
- Bacillus lipopeptide /
- loquat anthracnose /
- antifungal effect /
- disease incidence
-
表 1 不同含量脂肽对真菌的抑制作用
Table 1. Antifungal effect of lipopeptides
脂肽含量
Lipopeptide content/
(mg·mL−1)抑菌圈直径
The inhibition zone diameter/mm枇杷炭疽病菌
Colletotrichum acutatum
FJAT-30256香蕉尖孢镰刀菌
Fusarium oxysporum
FJAT-370甜瓜尖孢镰刀菌
F. oxysporum
FJAT-9230小新壳梭孢菌
Neofusicoccum parvum
FJAT-353130 22.75±0.31 a 22.35±0.48 a 25.46±0.42 a 21.73±0.66 a 20 21.33±0.18 b 22.34±0.63 a 20.01±0.54 b 19.73±1.75 ab 10 20.95±0.99 b 21.48±0.39 a 17.43±0.83 c 17.61±0.11 b 注:同列数据后不同字母表示差异显著( P <0.05)。
Note: The difference letter in the same column indicated that the difference between the grades is significantly (P< 0.05).表 2 脂肽对枇杷炭疽病害治愈性试验结果
Table 2. Effect of lipopeptides in curing anthracnose on postharvest loquats
时间 Date 治愈性清水对照组
Curative water-treated group治愈性脂肽处理组
Curative lipopeptide-treated group发病率
Incidence/%平均病斑直径
Average lesion diameter/mm发病率
Incidence/%平均病斑直径
Average lesion diameter/mm接种第3天 On the third day after inoculation 60.0 4.00±0.51 0 — 接种第4天 On the forth day after inoculation 100.0 7.25±1.37 a 70.8 5.53±1.33 b 接种第5天 On the fifth day after inoculation 100.0 13.15±2.94 a 100.0 10.08±3.80 b 接种第6天 On the sixth day after inoculation 100.0 18.75±3.23 a 100.0 15.33±2.61 b 注:同行数据后不同字母表示差异显著(P<0.05),表3同。
Note: The difference letter in the same row indicated that the difference between the grades is significantly (P < 0.05), the same as table 3.表 3 脂肽对枇杷炭疽病害预防性试验结果
Table 3. Effect of lipopeptides in preventing anthracnose on postharvest loquats
时间 Date 预防性清水对照组
Preventive water-treated group预防性脂肽处理组
Preventive lipopeptide-treated group发病率
Incidence/%平均病斑直径
Average lesion diameter/mm发病率
Incidence/%平均病斑直径
Average lesion diameter/mm接种第3天 On the third day after inoculation 27.8 5.00±0.25 0 — 接种第4天 On the forth day after inoculation 100.0 6.89±2.91 a 27.3 4.67±1.21 a 接种第5天 On the fifth day after inoculation 100.0 11.29±4.60 a 59.1 8.00±5.10 a 接种第6天 On the sixth day after inoculation 100.0 16.29±3.70 a 72.7 16.13±3.82 a 接种第7天 On the seventh day after inoculation 100.0 23.28±4.88 a 90.9 19.75±5.69 a -
[1] 何志刚, 李维新, 林晓姿, 等. 枇杷果实成熟和贮藏过程中有机酸的代谢 [J]. 果树学报, 2005, 22(1):23−26.HE Z G, LI W X, LIN X Z, et al. Organic acids metabolism of loquat fruit during maturity and storage [J]. Journal of Fruit Science, 2005, 22(1): 23−26.(in Chinese) [2] 陶金华, 刘岱, 陈发河. 炭疽病侵染对枇杷果实病程相关酶活性的影响 [J]. 天津农业科学, 2011, 17(5):1−4. doi: 10.3969/j.issn.1006-6500.2011.05.001TAO J H, LIU D, CHEN F H. Effect of Colletotrichum gloeosporioides infection on relevant enzymes changes of loquat fruit [J]. Tianjin Agricultural Sciences, 2011, 17(5): 1−4.(in Chinese) doi: 10.3969/j.issn.1006-6500.2011.05.001 [3] 王华东. 热空气和MeJA处理对枇杷采后炭疽病的防治效果及其机理研究[D]. 南京: 南京农业大学, 2014.WANG H D. Study on effects and mechanisms of hot air treatment and MeJA treatment on postharvest antharcnose rot of loquat fruit [D]. Nanjing: Nanjing Agriculture University, 2011. (in Chinese) [4] 彦群, 杨叶, 黄圣明. 枇杷果实病害及防腐保鲜 [J]. 广西热带农业, 2001, 81(4):16−18.YAN Q, YANG Y, HUANG S M. Research on loquat fruit diseases, antiseptic and fresh-keeping [J]. Guangxi Science & Technology of Tropical Crops, 2001, 81(4): 16−18.(in Chinese) [5] 柳志强, 郑媛, 吴亚腾, 等. 阴香内生细菌YX6的鉴定及对香蕉炭疽病的防效 [J]. 西南农业学报, 2014, 27(6):2402−2404.LIU Z Q, ZHENG Y, WU Y T, et al. Study on identification of cinnamomum burmannii endophytic bacterial strain YX6 and its control effect on Colletotrichum musae [J]. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2402−2404.(in Chinese) [6] 黄现青, 别小妹, 吕凤霞, 等. 枯草芽孢杆菌fmbJ产脂肽抑制点青霉效果及其桃防腐试验 [J]. 农业工程学报, 2008(1):263−267. doi: 10.3321/j.issn:1002-6819.2008.01.052HUANG X Q, BIE X M, LYU F X, et al. Inhibitory effect of lipopeptides from Bacillus Subtilis fmbJ on Penicillium notatum and its antisepsis to peach [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(1): 263−267.(in Chinese) doi: 10.3321/j.issn:1002-6819.2008.01.052 [7] TORAL L, RODRÍGUEZ M, BÉJAR V, et al. Antifungal activity of lipopeptides From Bacillus XT1 CECT 8661 against Botrytis cinerea [J]. Front Microbiol, 2018, 9: 1315. doi: 10.3389/fmicb.2018.01315 [8] CALVO H, MENDIARA I, ARIAS E, et al. The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots [J]. Food Microbiol, 2019, 82: 62−69. doi: 10.1016/j.fm.2019.01.010 [9] JIN P F, WANG H N, TAN Z, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz [J]. Pesticide Biochemistry and Physiology, 2020, 163: 102−107. doi: 10.1016/j.pestbp.2019.11.004 [10] LIN F X, HUANG Z H, CHEN Y R, et al. Effect of combined bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation [J]. J Sci Food Agric, 2021, 101(1): 229−239. doi: 10.1002/jsfa.10635 [11] CHEN M C, WANG J P, ZHU Y J, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349 [J]. J Appl Microbiol, 2019, 126(5): 1519−1529. doi: 10.1111/jam.14213 [12] PRAMUDITO T E, AGUSTINA D, NGUYEN T K N, et al. A novel variant of narrow-spectrum antifungal bacterial lipopeptides that strongly inhibit Ganoderma boninense [J]. Probiotics Antimicrob Proteins, 2018, 10(1): 110−117. doi: 10.1007/s12602-017-9334-2 [13] AIT KAKI A, SMARGIASSO N, ONGENA M, et al. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a salt lake of eastern algeria [J]. Curr Microbiol, 2020, 77(3): 443−451. doi: 10.1007/s00284-019-01855-w [14] GONG A D, LI H P, YUAN Q S, et al. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum [J]. Plos one, 2015, 10: 1−18. [15] ZHAI L, REN R, MENG D, et al. Comparison of aminotransferases of three Bacillus strains Bacillus altitudinis W3, Bacillus velezensis SYBC H47, and Bacillus amyloliquefaciens YP6 via genome analysis and bioinformatics [J]. J Appl Genet, 2019, 60(3-4): 427−430. doi: 10.1007/s13353-019-00512-z [16] MIHALACHE G, BALAES T, GOSTIN I, et al. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants [J]. Environ Sci Pollut Res Int, 2018, 25(30): 29784−29793. doi: 10.1007/s11356-017-9162-7 [17] CHO S J, LEE S K, CHA B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03 [J]. FEMS Microbiology Letters, 2003, 223: 47−51. doi: 10.1016/S0378-1097(03)00329-X [18] HIRADATE S, YOSHIDA S, SUGIE H, et al. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2 [J]. Phytochemistry, 2002, 61: 693−698. doi: 10.1016/S0031-9422(02)00365-5 [19] KIM P I, BAI H, BAI D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26 [J]. Journal of Applied Microbiology, 2004, 97: 942−949. doi: 10.1111/j.1365-2672.2004.02356.x