• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱特征参数的琯溪蜜柚叶片叶绿素含量估算

栗方亮 孔庆波 张青

栗方亮,孔庆波,张青. 基于光谱特征参数的琯溪蜜柚叶片叶绿素含量估算 [J]. 福建农业学报,2021,36(12):1447−1456 doi: 10.19303/j.issn.1008-0384.2021.12.008
引用本文: 栗方亮,孔庆波,张青. 基于光谱特征参数的琯溪蜜柚叶片叶绿素含量估算 [J]. 福建农业学报,2021,36(12):1447−1456 doi: 10.19303/j.issn.1008-0384.2021.12.008
LI F L, KONG Q B, ZHANG Q. Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1447−1456 doi: 10.19303/j.issn.1008-0384.2021.12.008
Citation: LI F L, KONG Q B, ZHANG Q. Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1447−1456 doi: 10.19303/j.issn.1008-0384.2021.12.008

基于光谱特征参数的琯溪蜜柚叶片叶绿素含量估算

doi: 10.19303/j.issn.1008-0384.2021.12.008
基金项目: 福建省自然科学基金项目(2019J01106);福建省属公益类科研院所基本科研专项(2021R1025008)
详细信息
    作者简介:

    栗方亮(1980−),男,博士,助理研究员,研究方向:土壤生态与植物营养(E-mail:lifl007@qq.com

    通讯作者:

    孔庆波(1978−),男,博士,副研究员,研究方向:植物营养与水肥一体化(E-mail:qbkong@qq.com

  • 中图分类号: S 666.3; S 127

Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves

  • 摘要:   目的  利用光谱特征参数建立蜜柚叶片叶绿素含量估算模型,为实现快速、无损、精确的叶绿素含量估算提供理论依据和技术支持。  方法  通过提取原始光谱及一阶微分光谱特征波段和光谱特征变量,分析蜜柚叶片高光谱特征参数与叶绿素相对含量(SPAD)值之间的相关关系,构建单变量估算模型和多元回归模型,并确定蜜柚叶绿素含量的最佳估算模型。  结果  在350~1050 nm的波段,不同SPAD 值的蜜柚叶片反射光谱存在明显差异,光谱反射率均随叶片叶绿素含量升高而降低。原始光谱和一阶微分光谱与叶绿素含量在可见光范围内有多波段相关性显著。原始光谱曲线敏感波长为576 nm和701 nm, 一阶微分曲线的敏感波长为691 nm和748 nm。在利用光谱特征参数建立的回归模型中,根据拟合验证精度筛选出多个拟合模型,其中多元回归模型YSPAD=54.67−15.75 NDVI691,748−10.60 GRVI550,770+6565.6 R691−6784.58 DVI691,748,其拟合决定系数R2为0.894,验证决定系数R2为0.8356,RMSE为7.07,可确定为蜜柚叶片叶绿素含量的最佳预测模型;而一阶微分归一化植被指数NDVI691,748和差值植被指数DVI691,748为单变量的回归模型的拟合决定系数R2分别为0.824和0.798,验证决定系数R2分别为0.797和0.7918,RMSE分别为13.21和12.56。  结论  综合建模精度和模型验证精度,基于高光谱指数NDVI691,748GRVI550,770R691DVI691,748的多元回归模型可确定为蜜柚叶片叶绿素含量的最佳估算模型。
  • 图  1  不同叶绿素含量的蜜柚叶片高光谱曲线

    Figure  1.  Hyperspectral curves of pomelo leaves with varied chlorophyll contents

    图  2  蜜柚叶片叶绿素含量与原始光谱反射率的相关性

    Figure  2.  Correlation between chlorophyll content and original reflectance spectrum of pomelo leaves

    图  3  蜜柚叶片叶绿素含量与一阶光谱反射率的相关性

    Figure  3.  Correlation between chlorophyll content and first-order reflectance spectrum of pomelo leaves

    图  4  蜜柚叶片SPAD实测值与预测值比较

    Figure  4.  Measured and predicted SPADs of pomelo leaves

    表  1  蜜柚叶片样本的SPAD值

    Table  1.   SPADs of pomelo leaf samples

    组别
    Group
    样本数
    Sample number
    最小值
    Minimum value
    最大值
    Maximum value
    平均值
    Average value
    标准偏差
    Standard deviation
    SPAD1 30 26.46 43.43 35.57 4.63
    SPAD2 30 46.25 78.46 68.61 4.95
    SPAD3 30 78.80 85.21 81.14 4.35
    验证组
    Validation group
    30 26.12 77.21 53.61 16.56
    下载: 导出CSV

    表  2  选取的高光谱特征参数及说明

    Table  2.   Selected hyperspectral characteristic parameters and descriptions

    光谱特征参数类型
    Type of spectral
    characteristic parameter
    光谱特征参数名称
    Name of spectral
    characteristic parameter
    光谱特征参数说明
    Description of spectral
    characteristic parameter
    光谱位置变量
    Spectral position variable
    Db(蓝边幅值Blue edge amplitude) 490~530 nm内一阶微分的最大值
    Maximum value of first-order differential in 490-530 nm
    Dy(黄边幅值Yellow edge amplitude) 560~640 nm内一阶微分的最大值
    Maximum value of first-order differential in 560-640 nm
    Dr(红边幅值Red edge amplitude) 680~760 nm内一阶微分的最大值
    Maximum value of first-order differential in 680-760 nm
    λb(蓝边位置Blue edge position) Db对应的波长位置Wavelength position corresponding to Db
    λy(黄边位置Yellow edge position) Dy对应的波长位置
    Wavelength position corresponding to Dy
    λr(红边位置Red edge position) Dr对应的波长位置
    Wavelength position corresponding to Dr
    Rg(绿峰幅值Green peak amplitude) 510~560 nm内光谱反射率的最大值
    Maximum spectral reflectance in 510-560 nm
    Rr(红谷幅值Red valley amplitude) 640~680 nm内光谱反射率的最小值
    Minimum spectral reflectance in 640-680 nm
    光谱面积变量
    Spectral area variable
    SDb(蓝边面积Blue edge area) 490~530 nm内一阶微分光谱值的总和
    Sum of first-order differential spectral values in 490-530 nm
    SDy(黄边面积Yellow edge area) 560~640 nm内一阶微分光谱值的总和
    Sum of first-order differential spectral values in 560-640 nm
    SDr(红边面积Red edge area) 680~760 nm内一阶微分光谱值的总和
    Sum of first-order differential spectral values in 680-760 nm
    VI1=Rg/Rr 绿峰Rg与红谷Rr幅值的比值
    Ratio of green peak amplitude Rg to red valley amplitude Rr
    VI2=(RgRr)/(Rg+Rr 绿峰Rg与红谷Rr幅值的归一化值
    Normalized value of green peak amplitude Rg to red valley amplitude Rr
    VI3=SDr/SDb 红边与蓝边面积比值 Ratio of red edge area to blue edge area
    VI4=(SDrSDb)/(SDr+SDb 红边与蓝边面积的归一化值
    Normalized value of red edge area and blue edge area
    植被指数变量
    Vegetation index variable
    DVI(差值植被指数Difference vegetation index) DVI(λ1, λ2)= Rλ1Rλ2
    RVI(比值植被指数Ratio vegetation index) RVI(λ1, λ2)= Rλ1/Rλ2
    NDVI(归一化植被指数
    Normalized difference vegetation index)
    NDVI(λ1, λ2)=( Rλ1Rλ2)/(Rλ1+ Rλ2
    GRVI(绿波段比值植被指数
    Green band ratio vegetation index)
    GRVI(550, 770)= R550/ R770
    GNDVI(绿波段归一化植被指数
    Green band normalized difference vegetation index)
    GNDVI(550, 770) =( R550R770)/(R550+ R770
    下载: 导出CSV

    表  3  光谱特征参数及敏感波段植被指数与蜜柚叶绿素含量相关关系

    Table  3.   Correlation between spectral characteristic parameters, sensitive band vegetation indices and chlorophyll contents of pomelo leaves

    光谱特征参数名称
    Name of spectral characteristic parameter
    相关系数r
    Correlation coefficient
    光谱特征参数名称
    Name of spectral characteristic parameter
    相关系数r
    Correlation coefficient
    Db −0.703** VI4 0.744**
    Dy 0.255 R576 −0.799**
    Dr −0.532** R701 −0.829**
    λb 0.498** R691 −0.900**
    λy −0.134 R748 0. 940**
    λr 0.707** DVI576,701 0.718**
    Rg −0.734** RVI576,701 0.620**
    Rr −0.525** NDVI576,701 −0.560**
    SDb −0.716** DVI′691,748 0.880**
    SDy −0.541** RVI691,748 0.708**
    SDr 0.546** NDVI′691,748 0.940**
    VI1 −0.714** GRVI550,770 0.910**
    VI2 −0.738** GNDVI550,770 0.850**
    VI3 0.745**
    下载: 导出CSV

    表  4  蜜柚叶片叶绿素含量的单变量估测模型

    Table  4.   Univariate estimation models for chlorophyll content of pomelo leaves

    光谱特征参数名称
    Name of spectral characteristic parameter
    估测模型
    Estimation model
    R2
    RMSERE%
    NDVI′691,748
    GRVI550,770
    R′691
    DVI′691,748
    R′748
    GNDVI550,770
    Y=71.26−23.82 x−16.46 x2
    Y=109.38−292.40x+259.51x2
    Y=80.11+82367.6x+3415x2
    Y=68.58−5369.37x+195635.43x2
    Y=20.99+28303.8x−3056x2
    Y=158.79−460.33x+449.68x2
    0.824
    0.816
    0.802
    0.798
    0.797
    0.796
    12.40
    13.58
    13.98
    15.45
    15.59
    15.98
    17.01
    18.54
    18.98
    20.14
    20.45
    21.41
    下载: 导出CSV

    表  5  蜜柚叶片叶绿素含量估测模型的拟合精度比较

    Table  5.   Fitting accuracy of estimation models for chlorophyll content of pomelo leaves

    光谱特征参数名称
    Name of spectral characteristic parameter
    实测值与估测值拟合方程
    Fitting equation between measured value and estimated value
    R2RMSERE%
    NDVI′691,748
    GRVI550,770
    R′691
    DVI′691,748
    R′748
    GNDVI550,770
    多元回归 Multiple regression
    Y=1.25x−5.6191
    Y=1.1633x−0.945
    Y=1.1982x−2.8258
    Y=1.2451x−5.3558
    Y=1.9522x−35.447
    Y=0.7895x+14.453
    Y=1.2732x−7.2039
    0.797
    0.7293
    0.7535
    0.7918
    0.7520
    0.6044
    0.8356
    13.21
    12.86
    11.08
    12.56
    25.03
    9.92
    7.07
    17.45
    17.77
    15.59
    18.54
    36.03
    15.99
    10.70
    下载: 导出CSV
  • [1] 张青, 栗方亮, 孔庆波, 等. 不同减量施肥模式对蜜柚产量、品质及经济效益的影响 [J]. 果树学报, 2021, 38(3):783−792.

    ZHANG Q, LI F L, KONG Q B, et al. Effect of different reduced fertigation modes on the yield, quality and economic benefits of honey pomelo [J]. Journal of Fruit Science, 2021, 38(3): 783−792.(in Chinese)
    [2] LIU P, SHI R, GAO W. Estimating leaf chlorophyll contents by combining multiple spectral indices with an artificial neural network [J]. Earth Science Informatics, 2018, 11(1): 147−156. doi: 10.1007/s12145-017-0319-1
    [3] AMIRRUDDIN A D, MUHARAM F M, ISMAIL M H, et al. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: analysis of decision tree and random forest. Computers and Electronics in Agriculture, 2020, 169: 105221.
    [4] PENG Z, GUAN L, LIAO Y, et al. Estimating total leaf chlorophyll content of Gannan navel orange leaves using hyperspectral data based on partial least squares regression [J]. IEEE Access, 2019, 7: 155540−155551. doi: 10.1109/ACCESS.2019.2949866
    [5] 袁炜楠, 许童羽, 曹英丽, 等. 基于主基底分析降维方法的水稻冠层叶片叶绿素含量估算 [J]. 浙江大学学报(农业与生命科学版), 2018, 44(4):423−430.

    YUAN W N, XU T Y, CAO Y L, et al. Estimation of chlorophyll content in rice canopy leaves based on main base analysis and dimensionality reduction method [J]. Journal of Zhejiang University (Agric. & Life Sci. ), 2018, 44(4): 423−430.(in Chinese)
    [6] 李恒凯, 王英浩. 甜柚叶绿素含量高光谱无损检测模型[J]. 华南农业大学学报, 2019, 40(2): 126–132.

    LI H K, WANG Y H. Hyperspectral nondestructive detection model of chlorophyll content of Citrus maxima[J]. Journal of South China Agricultural University, 2019, 40(2): 126–132. (in Chinese)
    [7] 姜海玲, 李耀, 赵艺源, 等. 扬花期冬小麦冠层叶绿素含量高光谱遥感反演 [J]. 吉林师范大学学报(自然科学版), 2020, 41(3):133−140.

    JIANG H L, LI Y, ZHAO Y Y, et al. Study on the inversion of winter wheat canopy chlorophyll content during flowering period based on hyperspectral remote sensing [J]. Jounral of Jilin Nomal Unversity (Natural Science Edition), 2020, 41(3): 133−140.(in Chinese)
    [8] 梁爽, 赵庚星, 朱西存. 苹果树叶片叶绿素含量高光谱估测模型研究 [J]. 光谱学与光谱分析, 2012, 32(5):1367−1370. doi: 10.3964/j.issn.1000-0593(2012)05-1367-04

    LIANG S, ZHAO G X, ZHU X C. Hyperspectral estimation models of chlorophyll content in apple leaves [J]. Spectroscopy and Spectral Analysis, 2012, 32(5): 1367−1370.(in Chinese) doi: 10.3964/j.issn.1000-0593(2012)05-1367-04
    [9] 王爱芳, 王妮, 高明, 等. 基于高光谱的香樟叶绿素含量估测模型研究 [J]. 黑龙江工程学院学报, 2018, 32(1):14−19.

    WANG A F, WANG N, GAO M, et al. Estimation models of camphor leaf chlorophyll content based on proximal hyperspectral remote sensing [J]. Journal of Heilongjiang Institute of Technology, 2018, 32(1): 14−19.(in Chinese)
    [10] KHDERY G, ARAFAT S, ABOELGHAR M, et al. Selection of optimal hyperspectral vegetation indices for estimating chlorophyll content of some plant species [J]. European Chemical Bulletin, 2017, 6(11): 531−535. doi: 10.17628/ecb.2017.6.531-535
    [11] 楚万林, 齐雁冰, 常庆瑞, 等. 棉花冠层叶片叶绿素含量与高光谱参数的相关性 [J]. 西北农林科技大学学报(自然科学版), 2016, 44(9):65−73.

    CHU W L, QI Y B, CHANG Q R, et al. Relationship between chlorophyll content and hyperspectral parameters in canopy leaves of cotton [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2016, 44(9): 65−73.(in Chinese)
    [12] 李宗飞, 苏继霞, 费聪, 等. 基于高光谱数据的滴灌甜菜叶绿素含量估算 [J]. 农业资源与环境学报, 2020, 37(5):761−769.

    LI Z F, SU J X, FEI C, et al. Estimation of chlorophyll content in sugar beet under drip irrigation based on hyperspectral data [J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 761−769.(in Chinese)
    [13] 张新乐, 于滋洋, 李厚萱, 等. 东北水稻叶片SPAD遥感光谱估算模型 [J]. 中国农业大学学报, 2020, 25(1):66−75. doi: 10.11841/j.issn.1007-4333.2020.01.08

    ZHANG X L, YU Z Y, LI H X, et al. Remote sensing estimation model of SPAD for rice leaves in Northeast China [J]. Journal of China Agricultural University, 2020, 25(1): 66−75.(in Chinese) doi: 10.11841/j.issn.1007-4333.2020.01.08
    [14] GUO T, TAN C, LI Q, et al. Estimating leaf chlorophyll content in tobacco based on various canopy hyperspectral parameters [J]. Journal of Ambient Intelligence and Humanizd Computing, 2019, 10(1): 3239−3247.
    [15] 孙玉婷, 杨红云, 孙爱珍, 等. 水稻叶片SPAD值的高光谱估算模型 [J]. 南方农业学报, 2020, 51(5):1062−1069. doi: 10.3969/j.issn.2095-1191.2020.05.010

    SUN Y T, YANG H Y, SUN A Z, et al. Hyperspectral estimation model for SPAD value of rice leaves [J]. Journal of Southern Agriculture, 2020, 51(5): 1062−1069.(in Chinese) doi: 10.3969/j.issn.2095-1191.2020.05.010
    [16] CUI Y, ZHAO H, HUANG C, et al. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content [J]. Remote Sensing, 2019, 11(8): 974. doi: 10.3390/rs11080974
    [17] 孙小香, 王芳东, 郭熙, 等. 基于水稻冠层高光谱的叶片SPAD值估算模型研究 [J]. 江西农业大学学报, 2018, 40(3):444−453.

    SUN X X, WANG F D, GUO X, et al. The estimation models of rice leaf SPAD value based on canopy spectrum [J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 444−453.(in Chinese)
    [18] VANBRABANT Y, TITS L, DELALIEUX S, et al. Multitemporal chlorophyll mapping in pome fruit orchards from remotely piloted aircraft systems [J]. Remote Sensing, 2019, 11(12): 1468. doi: 10.3390/rs11121468
    [19] 高金龙, 侯尧宸, 白彦福, 等. 基于高光谱数据的高寒草甸氮磷钾含量估测方法研究-以青海省贵南县及玛沁县高寒草甸为例 [J]. 草业学报, 2016, 25(3):9−21. doi: 10.11686/cyxb2015268

    GAO J L, HOU Y C, BAI Y F, et al. Methods for estimating nitrogen, phosphorus, and potassium content based on hyperspectral data from alpine meadows in Guinan and Maqin Counties, Qinghai Province [J]. Acta Prataculturae Sinica, 2016, 25(3): 9−21.(in Chinese) doi: 10.11686/cyxb2015268
    [20] DIAN Y, LE Y, FANG S, et al. Influence of spectral bandwidth and position on chlorophyll content retrieval at leaf and canopy levels [J]. Journal of Indian Society of Remote Sensing, 2016, 44: 583−593. doi: 10.1007/s12524-015-0537-2
    [21] 亚森江·喀哈尔, 尼加提·卡斯木, 茹克亚·萨吾提, 等. 基于高光谱的春小麦抽穗期叶绿素含量估算方法 [J]. 江苏农业科学, 2019, 47(18):266−270.

    YASENJIANG K, NIJIATI K, RUKEYA S, et al. Estimation method of chlorphyll content at heading stage of spring wheat based on hyperspectral data [J]. Jiangsu Agricultural Sciences, 2019, 47(18): 266−270.(in Chinese)
    [22] 陈澜, 常庆瑞, 高一帆, 等. 猕猴桃叶片叶绿素含量高光谱估算模型研究 [J]. 西北农林科技大学学报(自然科学版), 2020, 48(6):79−89,98.

    CHEN L, CHANG Q R, GAO Y F, et al. Hyperspectral estimation model of chlorophyll content in kiwifruit leaves [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2020, 48(6): 79−89,98.(in Chinese)
    [23] LING B, GOODIN D G, RAYNOR E J, et al. Hyperspectral analysis of leaf pigments and nutritional elements in tallgrass prairie vegetation [J]. Frontiers in Plant Science, 2019, 10: 1−13. doi: 10.3389/fpls.2019.00001
    [24] 王晓星, 常庆瑞, 刘梦云, 等. 冬小麦冠层水平叶绿素含量的高光谱估测 [J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):48−54.

    WANG X X, CHANG Q R, LIU MY, et al. Hyperspectral estimation of chlorophyll content in canopy of winter wheat [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2016, 44(2): 48−54.(in Chinese)
    [25] 于雷, 章涛, 朱亚星, 等. 基于IRIV 算法优选大豆叶片高光谱特征波长变量估测SPAD值 [J]. 农业工程学报, 2018, 34(16):148−154. doi: 10.11975/j.issn.1002-6819.2018.16.019

    YU L, ZHANG T, ZHUY X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering , 2018, 34(16): 148−154.(in Chinese) doi: 10.11975/j.issn.1002-6819.2018.16.019
    [26] 胥喆, 舒清态, 杨凯博, 等. 基于非成像高光谱的高山松叶绿素估算模型研究 [J]. 西北林学院学报, 2017, 32(2):73−78. doi: 10.3969/j.issn.1001-7461.2017.02.12

    XU Z, SHU Q T, YANG KB, et al. Estimation models of chlorophyll in pinus densata based on non-imaging hyperspectrum [J]. Journal of Northwest Forestry University, 2017, 32(2): 73−78.(in Chinese) doi: 10.3969/j.issn.1001-7461.2017.02.12
    [27] 余蛟洋, 常庆瑞, 班松涛, 等. 猕猴桃叶片 SPAD 值高光谱估算模型构建 [J]. 干旱地 区农业研究, 2018, 36(6):168−174.

    YU J Y, CHANG Q R, BAN S T, et al. Hyperspectral models for estimating SPAD values of kiwifruit leaves [J]. Agricultural Research in the Arid Areas, 2018, 36(6): 168−174.(in Chinese)
    [28] ZHAO Y, YAN C, LU S, et al. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data [J]. Ecological Indicators, 2019, 106(3): 105511.
    [29] 韩浩坤, 妙佳源, 张钰玉, 等. 基于高光谱反射率的糜子冠层叶片叶绿素含量估算 [J]. 干旱地区农业研究, 2018, 36(1):164−170. doi: 10.7606/j.issn.1000-7601.2018.01.25

    HAN H K, MIAO J Y, ZHANG Y Y, et al. Estimating chlorophyll content of proso millet canopy by hyperspectral reflectance [J]. Agricultural Research in the Arid Areas, 2018, 36(1): 164−170.(in Chinese) doi: 10.7606/j.issn.1000-7601.2018.01.25
    [30] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和 BP 神经网络的玉米叶片 SPAD 值遥感估算 [J]. 农业工程学报, 2016, 32(16):135−142. doi: 10.11975/j.issn.1002-6819.2016.16.019

    LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135−142.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.16.019
    [31] 陈志强, 王磊, 白由路, 等. 整个生育期玉米叶片 SPAD 高光谱预测模型研究 [J]. 光谱学与光谱分析, 2013, 33(10):2838−2842. doi: 10.3964/j.issn.1000-0593(2013)10-2838-05

    CHEN Z Q, WANG L, BAI Y L, et al. Hyperspectral prediction model for maize leaf SPAD in the whole growth period [J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2838−2842.(in Chinese) doi: 10.3964/j.issn.1000-0593(2013)10-2838-05
    [32] 潘蓓, 赵庚星, 朱西存, 等. 利用高光谱植被指数估测苹果树冠层叶绿素含量 [J]. 光谱学与光谱分析, 2013, 33(8):2203−2206. doi: 10.3964/j.issn.1000-0593(2013)08-2203-04

    PAN B, ZHAO G X, ZHU X C, et al. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters [J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203−2206.(in Chinese) doi: 10.3964/j.issn.1000-0593(2013)08-2203-04
    [33] 房贤一, 朱西存, 王凌, 等. 基于高光谱的苹果盛果期冠层叶绿素含量监测研究 [J]. 中国农业科学, 2013, 46(16):3504−3513. doi: 10.3864/j.issn.0578-1752.2013.16.022

    FANG X Y, ZHU X C, WANG L, et al. Hyperspectral monitoring of the canopy chlorophyll content at apple tree prosperous fruit stage [J]. Scientia Agricultura Sinica, 2013, 46(16): 3504−3513.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.16.022
    [34] PENG Y, ZHANG M, XU Z, et al. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data [J]. Scientific Reports, 2020, 10: 1−12. doi: 10.1038/s41598-019-56847-4
    [35] 茹克亚·萨吾提, 阿不都艾尼·阿不里, 尼加提·卡斯木, 等. 基于分数阶微分的春小麦叶绿素含量高光谱估算 [J]. 麦类作物学报, 2019, 39(6):738−746. doi: 10.7606/j.issn.1009-1041.2019.06.15

    RUKEYA S, ABUAINI A, NIJATI K, et al. Spectral estimation of chlorophyll content in spring wheat leaves based on fractional differential [J]. Journal of Triticeae Crops, 2019, 39(6): 738−746.(in Chinese) doi: 10.7606/j.issn.1009-1041.2019.06.15
    [36] 颜丙囤, 隋学艳, 王猛, 等. 拔节期淹水玉米冠层光谱变化特征分析 [J]. 山东农业科学, 2016, 48(5):28−30.

    YAN B D, SUI X Y, WANG M, et al. Character analysis of canopy spectral changes of corn at jointing stage under waterlogging stress [J]. Shandong Agricultural Sciences, 2016, 48(5): 28−30.(in Chinese)
    [37] 王 烁, 常庆瑞, 刘梦云, 等. 基于高光谱遥感的棉花叶片叶绿素含量估算 [J]. 中国农业大学学报, 2017, 22(4):16−27. doi: 10.11841/j.issn.1007-4333.2017.04.03

    WANG S, CHANG Q R, LIU M Y, et al. Estimation on chlorophyll content of cotton based on optimized spectral index [J]. Journal of China Agricultural University, 2017, 22(4): 16−27.(in Chinese) doi: 10.11841/j.issn.1007-4333.2017.04.03
    [38] 纪童, 王波, 杨军银, 等. 基于高光谱的草坪草叶绿素含量模拟估算 [J]. 光谱学与光谱分析, 2020, 40(8):2571−2577.

    JI T, WANG B, YANG J Y, et al. Hyperspectral-based estimation on the chlorophyll content of turfgrass [J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2571−2577.(in Chinese)
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  207
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-09-13
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回