Metabolome Analysis on Four Important Secondary Metabolites in Roots, Stems, and Leaves of Portulaca oleracea L.
-
摘要:
目的 探究马齿苋重要次生代谢产物成分及其在不同部位相对含量及联系。 方法 以马齿苋根茎叶为研究对象,利用高效液相色谱串联质谱进行代谢组学分析。 结果 马齿苋中生物碱、类黄酮、香豆素与木脂素以及萜类所含的种类及化合物分别有3类43种、7类34种、2类16种和3类5种,热图分析表明,这4类次生代谢产物在马齿苋茎和叶中的相对含量较根部更为接近;生物碱在根部和叶部总体含量较高;类黄酮在茎部总体含量较高;萜类以及香豆素与木脂素在根茎叶部含量依次递增。 结论 马齿苋不同部位所含生物碱、类黄酮、香豆素与木脂素以及萜类种类相同,但相同成分在不同部位含量差异较大。 Abstract:Objective Contents and interrelations of 4 important secondary metabolites in parts of a Portulaca oleracea L. plant were studied. Method Metabolomics of P. oleracea root, stem, and leaf were analyzed using high performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). Result There were 3 categories of 43 alkaloids, 7 categories of 34 flavonoids, 2 categories of 16 lignans and coumarins, and 3 categories of 5 terpenoids identified in the metabolites. A heatmap analysis showed the relative contents of the 4 important secondary metabolites to be similar in the stems and leaves but different from what in the roots. The alkaloids content was higher in the roots and leaves, while the flavonoids in the stems. Whereas the contents of terpenoids, lignans, and coumarins were increasingly more abundant from the roots to the stems and the leaves. Conclusion Same in kind, but significantly different in quantity, on the alkaloids, flavonoids, terpenoids, lignans, and coumarins were found in the roots, stems, and leaves of a P. oleracea plant. -
Key words:
- Portulaca oleracea L. /
- metabolome /
- secondary metabolites /
- compounds /
- component analysis
-
表 1 43种生物碱及其相对含量
Table 1. Components and relative contents of 43 alkaloids
次生代谢物
Metabolites化合物
Compound化学式
Formula保留时间
Rt/min相对含量
The relative contents叶 Leaf 茎 Stem 根 Root 酚胺Phenolamine N-反式阿魏酰酪胺 C18H19NO4 5.26 1.91×106±2.89×105b 2.33×106±1.87×105b 1.36×107±1.10×106a N-顺式阿魏酰酪胺 C18H19NO4 5.41 1.90×106±2.07×105b 2.29×106±1.80×105b 1.40×107±1.23×106a N'-阿魏酰腐胺 C14H20N2O3 2.94 1.15×104±5.00×103a 6.44×103±3.97×102a 9.00±0.00 b 多巴胺 C8H11NO2 1.34 1.82×106±5.20×105b 7.09×105±3.34×104c 4.73×106±5.70×105a 精胺 C10H26N4 1.10 4.45×106±7.39×105a 1.46×106±1.21×105c 2.06×106±2.88×105b N′,N″,N′″-对香豆酰阿魏酰咖啡酰亚精胺 C34H37N3O6 2.99 6.15×104±7.69×103a 5.72×103±1.81×103c 1.82×104±4.13×103b N-(4-O-(β-D-吡喃葡萄糖基)-E-阿魏洛基)-酪胺 C24H29NO9 4.28 1.08×105±1.99×104a 1.39×105±2.90×104a 2.68×104±8.49×103b N-z-对香豆酰酪胺 C17H17NO3 5.13 2.83×105±1.63×104b 4.54×105±9.70×104a 3.14×105±1.03×105ab N-顺式-对香豆酰酪胺 C17H17NO3 5.37 6.77×105±4.22×104ab 8.66×105±1.61×105a 6.32×105±1.79×105b N-顺式-芥子酰酪胺 C17H17NO3 5.32 6.92×105±4.79×104a 8.95×105±1.51×105a 6.52×105±1.96×105a 甲氧基-N-咖啡酰丁胺 C18H19NO4 5.41 8.66×105±1.25×105b 1.05×106±9.63×104b 6.62×106±5.79×105a N-对香豆酰酪胺 C17H17NO3 2.29 1.72×104±1.05×103ab 2.25×104±4.69×103a 1.55×104±5.70×103b 生物碱
Phenolamine马齿苋酰胺B C25H27NO12 4.29 1.74×107±4.93×105a 4.64×105±2.25×105b 3.01×104±5.22×104b 胆碱 C31H37NO17 1.24 1.40×107±3.79×105a 5.35×106±2.80×105c 9.74×106±2.64×105b 马齿苋酰胺C C24H25NO11 3.79 7.97×106±6.21×105a 3.82×105±1.45×105b 9.00±0.00 b 2,4-二羟基-7-甲氧基-1,4-苯并恶嗪-3-酮 C5H13 NO 2.77 2.52×105±1.61×104a 8.53×103±8.15×102b 9.00±0.00 b 马齿苋酰胺D C15H19NO10 3.91 3.03×106±1.81×105a 4.58×105±8.66×104b 1.27×104±1.19×104c 马齿苋酰胺A C30H35NO16 4.17 8.11×106±7.26×105a 1.70×105±1.95×105b 9.00±0.00 b N-乙酰-5-羟基色胺 C12H14N2O2 3.73 7.45×105±3.53×104a 1.88×105±1.95×104b 1.53×105±1.32×104b DL-2-氨基己二酸 C6H11NO4 1.30 5.01×104±5.57×103a 2.92×104±1.36×104ab 1.82×104±1.22×104b 7,8-二甲基咯嗪 C12H10N4O2 4.96 2.27×104±1.54×103a 2.42×104±3.58×103a 1.29×104±2.15×103b 氨基嘌呤 C5H5N5 2.39 5.50×105±7.85×104a 7.71×104±2.46×104b 1.04×105±2.60×104b 10-甲酰四氢叶酸 C20H23N7O7 2.92 1.93×106±6.66×104b 9.89×105±1.73×105c 2.75×106±2.89×105a 椰油酰胺丙基甜菜碱 C19H38N2O3 7.03 5.30×104±4.09×104a 2.40×104±1.36×104a 2.83×104±6.01×103a 葫芦巴碱 C7H7NO2 1.29 3.01×106±7.83×105a 1.87×106±2.95×105b 9.90×105±1.24×105b 1-(二羟基苯基)-N 2,N 3-双(4-羟基苯乙基)-(5-8)-二甲氧基-1,2-二氢萘-2,3-二甲酰胺 C36H36N2O8 5.75 2.86×105±4.64×104b 2.93×105±1.76×104b 1.92×106±1.01×105a (5-8)-羟基-1-(羟基二甲氧基苯基)-N2,N3-双(4-羟基苯乙基)-(5-8)-二甲氧基-1,2-二氢萘-2,3-二甲酰胺 C38H40N2O10 5.75 4.98×104±1.01×104b 1.87×104±3.84×103b 4.05×105±7.24×104a (5-8)-羟基-1-(羟基甲氧基苯基)-N2,N3-双(4-羟基苯乙基)-(5-8)-二甲氧基-1,2-二氢萘-2,3-二甲酰胺 C37H38N2O9 5.82 9.40×104±1.75×104b 6.42×104±5.50×103b 7.66×105±9.07×104a 6-脱氧荞麦碱 C6H13NO2 1.70 1.73×106±4.45×105a 6.85×105±1.05×105b 2.02×105±7.26×104b 咖啡酰胆碱 5-葡萄糖苷 C20H30NO9+ 2.62 2.01×104±7.51×102a 3.21×103±3.36×102b 3.14×103±6.87×102b 大海米酰胺 C36H36N2O8 5.76 7.68×105±8.64×104b 8.45×105±6.07×104b 7.34×106±4.58×105a 3-(2-氨基乙氧基)(羟基)磷酸]氧基-2-12-十八碳二酸酯 C23H44NO7 P 7.40 3.17×106±2.81×105a 3.29×105±6.10×104c 8.50×105±1.24×105b 2-羟基-5,8,11,14,17-二十烷氧基]丙基-2-(三甲铵)磷酸乙酯 C28H48NO7 P 7.43 2.84×106±4.42×105a 6.35×105±1.67×105c 8.55×105±1.38×105b 3-羟丙基棕榈酸酯葡萄糖胺 C31H61O14 N 7.70 1.99×106±3.54×105ab 5.08×105±7.22×104b 3.52×106±1.35×106a 3-(2-氨基乙氧基)(羟基)磷酸]氧基-2-羟丙基棕榈酸酯 C21H44NO7 P 7.76 3.12×106±5.07×105b 3.27×106±4.92×105b 7.57×106±8.31×105a 双(N,N-二乙基乙胺基)-2-乙酰氨基-1,5-无水-2-脱氧-1-[-羟基(磷酸)甲基]-D-葡萄糖醇 C21H48N3O9 P 7.81 8.17×105±1.93×105a 3.81×105±5.77×104b 6.07×105±9.83×104ab N-苯亚甲基异甲胺 C8H9 N 2.42 7.08×106±4.10×105a 2.68×106±2.71×105b 3.11×106±1.27×105b 吲哚类生物碱Plumerane 5-羟基吲哚-3-乙酸 C10H9 NO 3.45 9.00±0.00 b 1.49×104±2.75×103b 9.07×104±1.37×104a 色胺 C10H12N2 3.22 5.63×105±4.91×104a 2.59×105±1.22×104b 5.91×105±1.49×105a 吲哚-5-羧酸 C9H7NO2 4.82 6.46×104±1.80×103a 2.06×104±2.52×103b 2.33×104±2.10×103b 吲哚-3-甲醛 C9H7NO3 4.99 2.43×105±1.67×104a 5.63×104±1.11×104c 8.82×104±1.17×103b 3-吲哚甲酸 C9H7NO2 4.89 1.02×105±6.37×103a 3.43×104±6.10×103b 3.87×104±5.56×103b 吲哚 C8H7 N 2.97 8.16×104±5.05×103a 1.87×104±3.21×102b 1.53×104±5.29×102b 注:数据后同行不同小写字母表示不同部位同一处理之间差异显著(p<0.05)。表2至4同。
Note: The different lowercase letters in the same row from different parts with the same treated indicate significant differences(p<0.05).The same as Table 2-4.表 2 34种黄酮类及其相对含量
Table 2. Components and relative contents of 34 flavonoids
次生代谢物
Metabolites化合物
Compound化学式
Formula保留时间
Rt(min)相对含量
The relative contents叶
Leaf茎
Stem根
Root黄烷醇类
Flavanols没食子酸 C7H6O5 2.25 3.25×104±1.01×104a 3.33×104±8.10×103a 9.00±0.00 b 原儿茶酸 C7H6O4 3.51 5.48×105±5.55×104a 1.93×105±3.20×104c 4.68×105±6.73×104a 4-甲基儿茶酚 C7H8O2 4.52 9.55×103±3.09×103b 5.48×103±2.55×103b 2.94×105±1.32×105a 原儿茶醛 C7H6O3 3.05 7.29×104±9.21×103b 5.84×104±5.36×103b 1.15×106±1.32×105a 异黄酮
Isoflavones大豆苷 C21H20O9 4.02 5.57×104±8.95×103a 9.00±0.00 b 9.00±0.00 b 毛蕊黄酮苷 C22H22O10 4.27 2.66×105±4.44×104a 4.35×104±2.06×104a 9.00±0.00 b 黄酮碳糖苷
Flavonoid carbonoside异荭草素 C28H34O16 3.96 9.00±0.00 b 6.03×103±4.13×103a 1.59×104±6.47×103a 8-C-己糖基-橙皮素O-己糖苷 C21H20O11 3.26 6.26×104±2.87×103a 1.42×104±2.76×103a 9.00±0.00 b 荭草苷 C21H20O11 3.96 6.21×103±2.38×103b 7.28×103±5.64×103b 2.12×104±6.62×103a 8-C-己糖基芹菜素O-阿魏酰己糖苷 C37H38O18 3.37 1.27×104±1.48×103a 1.16×104±1.92×103a 5.76×103±7.49×102b 异柚葡糖苷 C21H22O10 4.22 1.83×104±1.65×103b 6.00×104±2.99×103a 5.30×104±7.43×103a 金雀异黄素 8-C-葡萄糖苷 C21H20O10 4.23 2.19×103±1.35×103a 1.08×104±9.67×103a 1.54×104±7.75×103a 黄酮醇
Flavonols山柰酚7-O-葡萄糖苷 C21H20O11 4.65 2.53×104±9.91×103a 1.09×104±5.79×103b 4.99×103±2.12×102b 槲皮素-3-O-葡萄糖苷 C21H20O12 4.48 4.58×103±3.71×103a 5.27×103±2.89×103a 1.40×104±7.87×103a 三叶豆甙 C21H20O11 4.49 2.19×104±8.76×103a 9.41×103±1.82×103b 9.00±0.00 b 紫云英苷 C21H20O11 4.66 9.00±0.00 b 1.75×104±5.44×103a 9.00±0.00 b 丁香亭3-O-己糖苷 C23H24O13 3.86 3.71×105±1.92×104a 1.23×105±2.48×104b 1.20×104±4.47×103c 3,7-二氧-甲基槲皮素 C17H14O7 6.36 2.22×105±3.36×104c 1.31×106±6.61×105b 5.16×106±6.21×105a 山柰酚3-O-β-(2''-O-乙酰基-β-D-葡萄糖醛酸) C23H20O13 5.07 5.04×106±8.11×105b 4.76×107±8.24×106a 5.12×105±3.37×105b 异鼠李素3-O-β-(2''-O-乙酰基-β-D-葡萄糖醛酸) C24H22O14 4.78 9.00±0.00 b 9.34×103±3.00×102a 9.00±0.00 b 槲皮素3,7-二-O-β-D-葡萄糖苷 C27H30O17 3.37 2.45×104±1.38×103a 5.67×103±2.37×103b 9.00±0.00 c 黄酮
Flavonoid马齿苋黄酮B C19H20O6 6.53 2.35×106±1.76×106a 8.09×104±7.38×104a 1.33×105±1.98×105a 马齿苋黄酮A C19H20O5 7.41 1.88×105±2.17×105a 9.11×103±3.38×103a 3.71×105±2.63×105a 马齿苋黄酮D C17H16O5 7.49 1.21×106±8.02×105a 2.13×104±1.07×104a 2.69×106±2.68×106a 5,2′-二羟基-7-甲氧基黄烷酮 C16H14O5 7.25 3.42×104±2.06×104a 9.00±0.00 b 2.02×104±1.68×104a 2′,4′-二羟基-4,6′-二甲氧基查尔酮 C17H16O5 7.60 2.97×106±1.51×106a 8.09×104±4.96×104b 6.05×106±6.57×106ab 马齿苋黄酮C C18H18O6 7.05 6.53×106±2.84×106a 3.29×105±2.83×105b 2.59×106±3.18×106ab 麦黄酮O-丙二酰己糖苷 C26H26O15 5.00 7.45×104±3.94×104b 5.74×104±1.41×104b 4.15×105±2.01×105a 麦黄酮7-O-己糖苷 C23H24O12 4.74 8.97×105±5.23×105b 2.23×105±6.89×104b 1.96×106±6.26×105a 麦黄酮O-葡萄糖二酸 C23H22O14 4.24 3.95×105±2.40×104a 1.58×105±2.22×104b 1.01×105±2.50×104c 芹菜素-3-O-α-L-鼠李糖苷 C22H24O8 3.68 1.22×106±7.02×104a 9.80×103±2.43×103b 9.00±0.00 c 二氢黄酮醇
Dihydroflavonol橙皮素O-丙二酰基己糖苷 C21H21O12 4.49 2.89×106±1.63×106a 1.27×106±9.36×105ab 9.00±0.00 b 花青素
Anthocyanins飞燕草色素 C25H26O14 4.79 2.11×104±3.21×103a 1.78×104±3.55×103a 1.14×104±1.20×103b 花翠素3-O-葡萄糖苷 C15H11O7 2.88 1.34×104±2.25×103a 1.26×104±2.51×103a 3.15×103±1.69×103b 表 3 16种香豆素与木脂素及其相关含量
Table 3. Components and relative contents of 16 lignans and coumarins
次生代谢物
Metabolites化合物
Compound化学式
Formula保留时间
Rt/min相对含量
The relative contents叶 Leaf 茎 Stem 根 Root 木脂素 Lignans 松脂醇-己糖 C26H32O11 4.67 8.35×105±5.48×104a 1.90×105±4.30×104b 2.14×104±8.16×103c 松脂醇-乙酰葡萄糖 C28H34O12 4.94 5.39×104±6.00×103a 2.31×104±8.81×103b 7.61×103±4.17×103c 丁香树脂酚-己糖 C28H36O13 4.69 4.64×105±2.54×104a 8.40×104±3.71×103b 9.00±0.00 c 丁香树脂酚-乙酰葡萄糖 C30H38O14 4.89 7.34×103±3.00×103a 9.00±0.00 a 6.52×103±8.79×104a 松脂醇 C20H22O6 3.86 2.89×104±2.10×103c 8.96×104±2.80×103b 1.66×105±9.13×104b 松脂醇二葡萄糖苷 C32H42O16 3.84 2.81×104±7.41×103a 9.00±0.00 b 9.00±0.00 b 1-羟基松脂素单葡萄糖苷 C26H32O12 4.26 3.80×104±1.80×103b 4.70×104±5.09×103b 3.05×105±1.56×105a 松脂醇单葡萄糖苷 C26H32O11 4.64 8.92×105±1.22×105a 2.11×105±6.25×104b 2.57×104±3.88×103c 皮树脂醇 C21H24O7 5.8 2.99×103±3.74×102c 6.05×103±8.37×102b 1.94×104±7.90×103a 丁香树脂酚 C22H26O8 5.71 8.11×103±1.11×103b 5.50×103±8.76×102b 3.21×104±5.78×103a 香豆素 Coumarins 秦皮乙素 C9H6O4 3.69 2.06×105±1.67×104a 5.17×104±3.74×103b 2.54×104±1.22×104c 秦皮素 C10H8O5 4.07 4.66×104±7.28×103b 4.85×105±6.66×104a 2.30×104±1.97×104b 秦皮甲素 C15H16O9 3.21 4.42×106±2.11×105a 2.95×106±4.21×105b 5.06×104±2.60×104c 瑞香素 C9H6O4 3.85 3.31×104±6.55×103a 8.55×103±2.67×103b 4.30×103±1.28×104b 七叶苷 C15H16O9 3.33 4.09×106±3.27×105a 2.73×106±4.33×105b 2.57×104±1.49×104c 茵芋苷 C15H16O8 3.33 5.38×105±3.89×104b 6.61×105±4.90×104a 9.00±0.00 c 表 4 5种萜类化合物分析及其相关含量
Table 4. Components and relative contents of 5 terpenoids
次生代谢物
Metabolites化学式
Formula化合物
Compound保留时间
Rt/min相对含量
The relative contents叶 Leaf 茎 Stem 根 Root 倍半萜
SesquiterpenoidsC16H22O9 獐牙菜苷 3.83 1.33×106±2.08×104a 1.39×105±2.29×104b 1.98×105±4.12×104b C16H22O10 獐牙菜苦苷 3.58 1.30×106±1.32×105a 1.87×106±2.35×105b 2.84×105±2.15×104b C22H30O14 3'-O-D-葡萄糖酰龙胆苦苷 3.48 3.53×104±6.84×103b 8.95×104±1.29×104a 9.00±0.000 c 三萜
TriterpeneC30H48O5 铁冬青酸 7.02 9.00±0.00 b 9.00±0.000 b 6.98×103±3.25×103a 三萜皂苷
SaponinC41H64O13 齐墩果酸-3-O-β-D-吡喃木糖(1→3)-
β-D-吡喃葡萄糖醛酸苷6.59 9.80×105±7.00×104a 6.88×104±1.49×104b 3.35×104±1.03×104c -
[1] ARROO R R J, BHAMBRA A S, HANO C, et al. Analysis of plant secondary metabolism using stable isotope-labelled precursors [J]. Phytochemical Analysis, 2021, 32(1): 62−68. doi: 10.1002/pca.2955 [2] ZHOU Y X, XIN H L, RAHMAN K, et al. Portulaca oleracea L. : A review of phytochemistry and pharmacological effects [J]. BioMed Research International, 2015, 2015: 1−11. [3] AMIRUL ALAM M, JURAIMI A S, RAFII M Y, et al. Genetic improvement of Purslane (Portulaca oleracea L. ) and its future prospects [J]. Molecular Biology Reports, 2014, 41(11): 7395−7411. doi: 10.1007/s11033-014-3628-1 [4] ELSHAMY M M, HEIKAL Y M, BONANOMI G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt [J]. Chemosphere, 2019, 225: 678−687. doi: 10.1016/j.chemosphere.2019.03.099 [5] 张倩, 黎平, 何子康, 等. 马齿苋内生菌橘青霉和波兰青霉中抗青枯菌的活性物质 [J]. 热带亚热带植物学报, 2019, 27(6):731−738. doi: 10.11926/jtsb.4065ZHANG Q, LI P, HE Z K, et al. Bioactivity metabolite from the endophytics Penicillium citrinum and P. polonicum of Portulaca oleracea against Ralstonia solanacearum [J]. Journal of Tropical and Subtropical Botany, 2019, 27(6): 731−738.(in Chinese) doi: 10.11926/jtsb.4065 [6] RAHIMI V, AJAM F, RAKHSHANDEH H. Purslane Nutrition Facts and Health Benefits [J]. J Pharmacopuncture., 2019, 22(1): 7−15. doi: 10.3831/KPI.2019.22.001 [7] FARKHONDEH T, SAMARGHANDIAN S, AZIMI-NEZHAD M, et al. The Hepato-protective Effects of Portulaca oleracea L. extract: Review [J]. Current Drug Discovery Technologies, 2019, 16(2): 122−126. doi: 10.2174/1570163815666180330142724 [8] IRANSHAHY M, JAVADI B, IRANSHAHI M, et al. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L [J]. Journal of Ethnopharmacology, 2017, 205: 158−172. doi: 10.1016/j.jep.2017.05.004 [9] MA Y F, BAO Y R, ZHANG W J, et al. Four lignans from Portulaca oleracea L. and its antioxidant activities [J]. Natural Product Research, 2020, 34(16): 2276−2282. doi: 10.1080/14786419.2018.1534852 [10] XIU F, LI X T, ZHANG W J, et al. A new alkaloid from Portulaca oleracea L. and its antiacetylcholinesterase activity [J]. Natural Product Research, 2019, 33(18): 2583−2590. doi: 10.1080/14786419.2018.1460833 [11] YANG X, YING Z M, LIU H R, et al. A new homoisoflavone from Portulaca oleracea L. and its antioxidant activity [J]. Natural Product Research, 2019, 33(24): 3500−3506. doi: 10.1080/14786419.2018.1484465 [12] YANG X, ZHANG W J, YING X X, et al. New flavonoids from Portulaca oleracea L. and their activities [J]. Fitoterapia, 2018, 127: 257−262. doi: 10.1016/j.fitote.2018.02.032 [13] FARKHONDEH T, SAMARGHANDIAN S. The therapeutic effects of Portulaca oleracea L. in hepatogastric disorders [J]. Gastroenterología y Hepatología, 2019, 42(2): 127−132. [14] ZHENG G Y, MO F F, LING C, et al. Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice [J]. Drug Design, Development and Therapy, 2017, 12: 47−55. doi: 10.2147/DDDT.S121084 [15] PARK J E, HAN J S. A Portulaca oleracea L. extract promotes insulin secretion via a K+ATP channel dependent pathway in INS-1 pancreatic β-cells [J]. Nutrition Research and Practice, 2018, 12(3): 183. doi: 10.4162/nrp.2018.12.3.183 [16] PARK J E, LEE J S, LEE H A, et al. Portulaca oleraceaL. extract enhances glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes [J]. Journal of Medicinal Food, 2018, 21(5): 462−468. doi: 10.1089/jmf.2017.4098 [17] 洪立洲, 王茂文, 丁海荣, 等. NaCl胁迫对马齿苋光合作用及叶绿素荧光特性的影响 [J]. 西北植物学报, 2011, 31(12):2516−2521.HONG L Z, WANG M W, DING H R, et al. Characteristics of photosynthesis and chlorophyll fluorescence in Portulaca oleracea under NaCl stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(12): 2516−2521.(in Chinese) [18] PARK J E, SEO Y, HAN J S. HM-Chromanone Isolated from Portulaca oleracea L. Protects INS-1 Pancreatic β Cells against Glucotoxicity-Induced Apoptosis [J]. Nutrients, 2019, 20: 72−6643. [19] ZAMAN S, SHAH S B, JIANG Y T, et al. Saline conditions alter Morpho-physiological intensification in purslane (Portulaca oleracea l.) [J]. Journal of Biological Regulators and Homeostatic Agents, 2018, 32(3): 635−639. [20] JAVED M T, AKRAM M S, HABIB N, et al. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress [J]. Environmental Science and Pollution Research, 2018, 25(3): 2958−2971. doi: 10.1007/s11356-017-0735-2 [21] MULCAHY S, GOOGACRE C. Opening Pandora’s box of academic integrity: Using plagiarism detection software. In R. Atkinson C, Mcbeath D, Jonas-Dwyer R, Phillips (Eds), Beyond the comfort zone: Proceedings of the 21st ASCILITE Conference[J]. Perth, 5 − 8 December, 2004, pp. 688 − 696. [22] 徐迪, 马康, 单吉浩, 等. 超高效液相色谱-串联质谱法测定动物尿液中5种镇静剂类药物残留 [J]. 核农学报, 2020, 34(9):2045−2050. doi: 10.11869/j.issn.100-8551.2020.09.2045XU D, MA K, SHAN J H, et al. Determination of five sedative drug residues in animal urine by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(9): 2045−2050.(in Chinese) doi: 10.11869/j.issn.100-8551.2020.09.2045 [23] CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769−1780. doi: 10.1093/mp/sst080 [24] FRAGA C G, CLOWERS B H, MOORE R J, et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics [J]. Analytical Chemistry, 2010, 82(10): 4165−4173. doi: 10.1021/ac1003568 [25] LEI X, LI J M, LIU B, et al. Separation and identification of four new compounds with antibacterial activity from Portulaca oleracea L [J]. Molecules (Basel, Switzerland), 2015, 20(9): 16375−16387. doi: 10.3390/molecules200916375 [26] LIANG X, LI L Z, TIAN J L, et al. A rapid extraction and analysis method for the simultaneous determination of 26 bioflavonoids in Portulaca oleracea L [J]. Phytochemical Analysis, 2014, 25(6): 537−543. doi: 10.1002/pca.2524 [27] MIAO L C, TAO H X, PENG Y, et al. The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-κB and MAPK activation [J]. Food Chemistry, 2019, 290: 239−245. doi: 10.1016/j.foodchem.2019.04.005 [28] 刘佃雨. 马齿苋的化学成分、质量控制及多酚提取物制备工艺研究[D]. 济南: 山东大学, 2011: 7−15LIU D Y. Study on chemical constituents, quality control and technology for extraction of polyphenol of Portulaca oleracea L.[D]. Jinan: Shandong University, 2011: 7−15. (in Chinese) [29] ALAM M A, JURAIMI A S, RAFII M Y, et al. Genetic diversity analysis among collected purslane (Portulaca oleracea L. ) accessions using ISSR markers [J]. Comptes Rendus Biologies, 2015, 338(1): 1−11. doi: 10.1016/j.crvi.2014.10.007 [30] ASHRAFI A, ZAHEDI M, SOLEIMANI M. Effect of co-planted purslane (Portulaca oleracea L. ) on Cd accumulation by sunflower in different levels of Cd contamination and salinity: A pot study [J]. International Journal of Phytoremediation, 2015, 17(9): 853−860. doi: 10.1080/15226514.2014.981239