Effect of Plant-spacing and Water-supply on Growth and Water Use of Sweet Corn Plants
-
摘要:
目的 研究不同株距与灌水量对甜玉米生物量、产量、水分利用效率的影响,探究甜玉米获得高产高效的最佳种植株距与灌水量。 方法 试验设置3 个种植株距(20、30、 40 cm)和3个灌水量(215、265、365 m3·hm−2)处理,对不同株距和灌水量处理的甜玉米个体生物量及其分配、群体经济产量和灌溉水利用效率进行分析。 结果 株距对甜玉米个体生物量有显著影响,灌水量对甜玉米个体生物量分配比例有显著影响,株距与灌水量对甜玉米生物量分配比例有显著交互作用。(1)随着株距增大,甜玉米个体生物量明显增加,株距为40 cm时个体生物量最大;随着灌水量的增加,个体茎生物量和茎比例显著增加;365 m3·hm−2+40 cm组合处理的个体生物量最高,且主成分综合得分最高。(2)随着株距、灌水量增加,叶、茎与地上生物量的异速生长指数先减小后增大,果穗与地上生物量的异速生长指数先增大后减小,果穗–地上生物量的异速生长指数最大的株距为30 cm、灌水量为265 m3·hm−2、组合为265 m3·hm−2+30 cm。(3)甜玉米群体经济产量和灌溉水利用效率均随着株距增大呈现降低趋势,随着灌水量的增加变化均不显著,以265 m3·hm−2+20 cm组合处理的群体经济产量和灌溉水利用效率最高。 结论 365 m3·hm−2+40 cm组合处理的甜玉米个体生物量最大,265 m3·hm−2+30 cm组合处理的甜玉米果穗的生物量分配比例最大,265 m3·hm−2+20 cm组合处理的甜玉米群体经济产量和灌溉水利用效率最高。 Abstract:Objective Effects of plant-spacing and water-supply on the biomass, yield, and water use efficiency of sweet corn plants were studied for better irrigation management. Method A field experiment including varied plant-spacing (i.e., 20, 30, and 40 cm) and amount of water supplied for the irrigation (i.e., 215, 265, and 365 m3·hm−2) for sweet corn cultivation was conducted to determine their effects on the biomass, yield, and water use efficiency of the plants. Result The spacing between individual plants significantly affected the biomass accumulation of each plant; the water-supply for the irrigation significantly altered the biomass allocation on a plant; and the interactions between the plant-spacing and irrigation significantly modified the allocation as well as the distribution of biomass on a plant. (1) As the spacing increased, the biomass increased significantly to reach a maximum at 40 cm separation between two plants. When that was combined with water-supply, both quantity and proportion of stem biomass on a plant significantly increased; and the weight of fresh ears became the largest and the principal component comprehensive score greatest on a plant at the irrigation that provided 365 m3·hm−2 of water. (2) The allometric constants of leaf and stem/aboveground biomass rose as the spacing and water-supply decreased and followed by an increase, while that of ear/aboveground biomass being the opposite. Those of ear/aboveground biomass peaked at the combined 30 cm for the spacing and 265 m3·hm−2 for the water-supply. Meanwhile, the constants of leaf and stem/aboveground biomass lowered but that of ear/aboveground biomass maxed. (3) Increasing spacing significantly decreased the sweet corn population yield. However, the irrigation did not exert significant effect on either yield or water use efficiency as they were the highest at the 265 m3·hm−2×20 cm combination. Conclusion The biomass of a sweet corn plant peaked with the combined treatments of 365 m3·hm−2 on water-supply and 40 cm on plant-spacing. But the greatest population yield and water use efficiency were observed under the combination of 265 m3·hm−2×20 cm. The information would lead to an improved irrigation operation for a high yield and high efficiency sweet corn production in arid hot valley and similar areas. -
Key words:
- Plant spacing /
- irrigation /
- individual biomass /
- allometric growth /
- population yield /
- water use efficiency
-
表 1 株距、灌水量及其交互作用对甜玉米个体生物量特征值的方差分析(F值)
Table 1. Variance analysis on effects of plant-spacing, water-supply, and their interactions on biomass of sweet corn plants (F value)
项目
Item株距
Plant
spacing灌水量
Irrigation
amount株距×灌水量
Plant spacing ×
irrigation amount叶生物量 Leaf biomass 4.47* 0.58 1.55 茎生物量 Stem biomass 9.07** 8.00** 2.24 果穗生物量 Corn ear biomass 3.00* 0.10 1.90 总生物量 Total biomass 5.85** 1.64 1.92 叶比例 Fraction of leaf 0.86 2.97* 1.62 茎比例 Fraction of stem 0.24 4.67** 3.12* 果穗比例 Fraction of corn ear 0.02 1.48 2.57* 注:表中数值后标* 者表示P<0.05,标**者表示P<0.01。
Note: * indicate significant difference at 0.05 level, ** indicate significant difference at 0.01 level.表 2 株距、灌水量及其配置处理对甜玉米个体生物量特征值的影响
Table 2. Effect of plant-spacing, water-supply, and their combinations on biomass of sweet corn plants
灌水量
Irrigation
amount/m3·hm−2株距
Plant
spacing/cm叶生物量
Leaf
biomass/g茎生物量
Stem
biomass/g果穗生物量
Corn ear
biomass/g总生物量
Total
biomass/g叶比例
Fraction of
leaf/%茎比例
Fraction of
stem/%果穗比例
Fraction of
corn ear/%20 36.47±1.85 b 75.13±4.77 c 59.25±8.62 b 170.84±13.73 b 21.45±0.76 a 44.01±1.47 bc 34.54±2.10 abc 215 30 38.76±1.85 b 78.54±4.77 bc 80.95±8.62 ab 198.24±13.73 b 19.74±0.76 ab 39.94±1.47 c 40.32±2.10 a 40 40.94±1.85 ab 91.11±4.77 b 81.32±8.62 ab 213.38±13.73 ab 19.71±0.76 ab 42.91±1.47 bc 37.38±2.10 a 平均值
Mean value38.72±1.07 A 81.59±2.75 B 73.84±4.98 A 194.16±7.93 A 20.30±0.44 AB 42.29±0.85 B 37.41±1.21 A 20 38.45±1.85 b 79.11±4.77 bc 73.39±8.62 ab 190.94±13.73 b 20.61±0.76 ab 42.27±1.47 bc 37.12±2.10 a 30 38.27±1.85 b 76.19±4.77 bc 70.55±8.62 b 185.02±13.73 b 21.44±0.76 a 42.44±1.47 bc 36.12±2.10 abc 265 40 38.53±1.85 b 80.85±4.77 bc 73.24±8.62 ab 192.63±13.73 b 21.63±0.76 a 44.58±1.47 bc 33.79±2.10 b 平均值
mean value38.42±1.07 A 78.72±2.75 B 72.40±4.98 A 189.53±7.93 A 21.23±0.44 A 43.10±0.85 B 35.68±1.21 A 20 36.58±1.85 b 79.32±4.77 bc 69.18±8.62 b 185.08±13.73 b 20.15±0.76 ab 43.59±1.47 bc 36.26±2.10 abc 30 38.13±1.85 b 91.36±4.77 b 61.16±8.62 b 190.65±13.73 b 20.49±0.76 ab 48.94±1.47 a 30.56±2.10 c 365 40 45.16±1.85 a 109.55±4.77 a 96.48±8.62 a 251.20±13.73 a 18.56±0.76 b 44.83±1.47 b 36.62±2.10 a 平均值
Mean value39.96±1.07 A 93.41±2.75 A 75.61±4.98 A 208.97±7.93 A 19.74±0.44 B 45.79±0.85 A 34.48±1.21 A 注:同列无相同小写字母表示不同株距与灌水量配置处理间差异显著(P<0.05),无相同大写字母表示不同灌水量处理间差异显著(P<0.05),表7同。
Note: Different lowercase in the same column meant significant difference between different irrigation amount and plant spacing combination treatment at 0.05 level. Different uppercase in the same column meant significant difference between different irigation amount at 0.05 level. The same as the table 7.表 3 主成分的特征根及贡献率
Table 3. Eigen values and contributions of two principal components
主成份
Principal
component特征根
Eigen
value贡献率
Contribution/%累计贡献率
Cumulative
contribution/%1 7.37 56.69 56.69 2 2.37 18.21 74.90 3 1.59 12.22 87.12 表 4 生物量特征指标在各主成分中的因子载荷量
Table 4. Factor load of biomass characteristics on individual principal component
项目
Item主成分 Component 1 2 3 叶鲜重 Leaf fresh weight 0.82 0.44 0.18 茎鲜重 Stem fresh weight 0.74 0.61 −0.05 果穗鲜重 Corn ear fresh weight 0.87 0.09 0.00 叶生物量 Leaf biomass 0.87 0.36 −0.21 茎生物量 Stem biomass 0.76 0.45 −0.43 果穗生物量 Corn ear biomass 0.95 −0.25 0.00 总生物量 Total biomass 0.98 0.07 −0.19 叶含水率 Water content of leaf 0.22 0.30 0.78 茎含水率 Water content of stem 0.07 0.45 0.72 果穗含水率 Water content of corn ear −0.64 0.53 −0.03 叶比例 Fraction of leaf −0.84 0.34 0.08 茎比例 Fraction of stem −0.67 0.62 −0.35 果穗比例 Fraction of corn ear 0.78 −0.57 0.22 表 5 生物量特征指标主成分得分及综合得分
Table 5. Principal components and comprehensive scores on sweet corn biomass characteristics
灌水量+株距
Irrigation amount/(m3·hm−2)+
plant spacing/cm主成分1得分
Score of principle
component 1主成分2得分
Score of principle
component 2主成分3得分
Score of principle
component 3综合得分
Comprehensive
score215+20 −0.42 −0.23 0.06 −0.31 215+30 0.20 −0.31 0.74 0.17 215+40 0.23 −0.09 −0.39 0.07 265+20 −0.03 −0.12 0.39 0.01 265+30 −0.10 0.11 0.77 0.07 265+40 −0.17 0.08 0.00 −0.09 365 +20 −0.23 −0.54 −0.39 −0.32 365+30 −0.21 0.76 −0.22 −0.01 365+40 0.73 0.35 −0.96 0.41 表 6 不同处理下甜玉米个体叶、茎、果穗生物量与地上生物量的异速生长关系
Table 6. Allometric scaling relationships among biomasses of leaves, stems, corn ears, and aboveground parts of sweet corn plants under treatments
灌水量
Irrigation amount/
(m3·hm−2)株距
Plant spacing/cm叶–地上生物量
Leaf-aboveground biomass茎–地上生物量
Stem-aboveground biomass果穗–地上生物量
Corn ear-aboveground biomassa R2 a R2 a R2 20 0.888 0.891 0.963 0.901 1.155 0.784 215 30 0.667 0.820 0.720 0.691 1.422 0.845 40 0.529 0.719 0.905 0.836 1.463 0.863 平均值 mean value 0.658 0.798 0.865 0.819 1.370 0.839 20 0.679 0.895 0.716 0.660 1.454 0.850 265 30 0.479 0.793 0.560 0.800 2.00 0.935 40 0.525 0.949 0.629 0.910 1.852 0.974 平均值 mean value 0.549 0.870 0.631 0.786 1.799 0.927 20 0.724 0.789 0.756 0.736 1.544 0.838 365 30 0.709 0.791 0.741 0.887 1.642 0.957 40 0.404 0.737 0.479 0.628 1.878 0.943 平均值 mean value 0.654 0.856 0.735 0.780 1.580 0.893 注:a为异速生长指数,R2为决定系数。
Note: a was allometric index, R2 was coefficient of determination.表 7 不同处理下甜玉米群体经济产量及灌溉水利用效率
Table 7. Population yield and water use efficiency of sweet corn plants under treatments
灌水量
Irrigation amount/
(m3·hm−2)株距
Plant spacing/cm种植密度
Density/
(株·hm−2)灌溉定额
Irrigation quota/
(m3·hm−2)经济产量
Yield/g灌溉水利用效率
Irrigation water use efficiency/
(kg·m−3)20 79 200 7 382.36±175.66 c 24 096.81±2087.91 ab 3.26±0.25 a 215 30 52 800 7 382.36±175.66 c 19 728.30±999.41 bcd 2.68±0.20 abc 40 39 600 7 382.36±175.66 c 15 550.92±1074.85 cd 2.11±0.10 bcd 平均值 mean value 7 382.36±175.66 C 19 792.01±3914.61 A 2.68±0.53 A 20 79 200 8 277.22±519.29 b 29 177.92±4261.57 a 3.52±0.42 a 265 30 52 800 8 277.22±519.29 b 19 324.20±6821.96 bcd 2.35±0.86 bcd 40 39 600 8 277.22±519.29 b 14 212.33±6579.59 cd 1.74±0.83 d 平均值 mean value 8 277.22±519.29 B 20 904.81±8390.31 A 2.54±1.01 A 20 79 200 8 737.03±259.35 a 25 976.65±3534.46 ab 2.98±0.50 ab 365 30 52 800 8 737.03±259.35 a 18 884.83±4800.01 bcd 2.17±0.62 bcd 40 39 600 8 737.03±259.35 a 17 086.24±2472.09 c 1.96±0.33 cd 平均值 mean value 8 737.03±259.35 A 20 649.24±5194.42 A 2.37±0.64 A -
[1] 罗军, 万忠, 谭俊, 等. 2013年广东甜玉米产业发展形势与对策建议 [J]. 广东农业科学, 2014, 41(5):42−45. doi: 10.3969/j.issn.1004-874X.2014.05.010LUO J, WAN Z, TAN J, et al. Development situation and countermeasures of Guangdong sweet corn industry in 2013 [J]. Guangdong Agricultural Sciences, 2014, 41(5): 42−45.(in Chinese) doi: 10.3969/j.issn.1004-874X.2014.05.010 [2] DUVICK D N. The contribution of breeding to yield advances in maize (Zea mays L. )[M]//Advances in Agronomy. Amsterdam: Elsevier, 2005: 83–145. [3] AHMAD M, AHMAD R, IQBALQBAL J, et al. Potassium application reduces bareness in different maize hybrids under crowding stress conditions [J]. Pakistan Journal of Agricultural Sciences, 2011, 48(1): 41−48. [4] 白彩云, 李少昆, 张厚宝, 等. 郑单958在东北春玉米区生态适应性研究 [J]. 作物学报, 2010, 36(2):296−302. doi: 10.3724/SP.J.1006.2010.00296BAI C Y, LI S K, ZHANG H B, et al. Ecological adaptability of Zhengdan 958 hybrid in northeast of China [J]. Acta Agronomica Sinica, 2010, 36(2): 296−302.(in Chinese) doi: 10.3724/SP.J.1006.2010.00296 [5] 戴明宏, 赵久然, 杨国航, 等. 不同生态区和不同品种玉米的源库关系及碳氮代谢 [J]. 中国农业科学, 2011, 44(8):1585−1595. doi: 10.3864/j.issn.0578-1752.2011.08.006DAI M H, ZHAO J R, YANG G H, et al. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties [J]. Scientia Agricultura Sinica, 2011, 44(8): 1585−1595.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.08.006 [6] 李淑华, 许明学, 张亚辉, 等. 2012年美国玉米高产竞赛简介 [J]. 玉米科学, 2013, 21(3):154−156. doi: 10.3969/j.issn.1005-0906.2013.03.030LI S H, XU M X, ZHANG Y H, et al. Brief introduction of America national maize yield contest in 2012 [J]. Journal of Maize Sciences, 2013, 21(3): 154−156.(in Chinese) doi: 10.3969/j.issn.1005-0906.2013.03.030 [7] RASOOL R, KUKAL S S, HIRA G S. Root growth and soil water dynamics in relation to inorganic and organic fertilization in maize–wheat [J]. Communications in Soil Science and Plant Analysis, 2010, 41(20): 2478−2490. doi: 10.1080/00103624.2010.511378 [8] 李建查, 孙毅, 赵广, 等. 干热河谷不同土壤水分下甜玉米灌浆期光合作用光响应特征 [J]. 热带作物学报, 2018, 39(11):2169−2175. doi: 10.3969/j.issn.1000-2561.2018.11.009LI J C, SUN Y, ZHAO G, et al. Light response characteristics of photosynthesis of sweet corn under different soil moisture at the filling stage in dry-hot valley [J]. Chinese Journal of Tropical Crops, 2018, 39(11): 2169−2175.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.11.009 [9] 庞秀明, 康绍忠, 王密侠. 作物调亏灌溉理论与技术研究动态及其展望 [J]. 西北农林科技大学学报(自然科学版), 2005, 33(6):141−146.PANG X M, KANG S Z, WANG M X, et al. Theory and technology research development and prospect of regulated deficit irrigation on crops [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2005, 33(6): 141−146.(in Chinese) [10] 康绍忠, 史文娟, 胡笑涛, 等. 调亏灌溉对于玉米生理指标及水分利用效率的影响 [J]. 农业工程学报, 1998, 14(4):88−93. doi: 10.3321/j.issn:1002-6819.1998.04.018KANG S Z, SHI W J, HU X T, et al. Effects of regulated deficit irrigation on physiological indices and water use efficiency of maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 1998, 14(4): 88−93.(in Chinese) doi: 10.3321/j.issn:1002-6819.1998.04.018 [11] 李建查, 李坤, 方海东, 等. 不同滴灌模式对干热河谷甜玉米生物量分配、产量和水分利用效率的影响 [J]. 生态与农村环境学报, 2019, 35(7):947−952.LI J C, LI K, FANG H D, et al. Effects of drip irrigation modes on biomass allocation, yield and water use efficiency of sweet corn in a dry hot valley [J]. Journal of Ecology and Rural Environment, 2019, 35(7): 947−952.(in Chinese) [12] MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation [J]. Functional Ecology, 2007, 21(4): 713−720. doi: 10.1111/j.1365-2435.2007.01276.x [13] GLEESON S K, TILMAN D. Allocation and the transient dynamics of succession on poor soils [J]. Ecology, 1990, 71(3): 1144−1155. doi: 10.2307/1937382 [14] BROWN J H, GEOFFREY B W, ENQUIST B J. Yes, west, brown and enquist"s model of allometric scaling is both mathematically correct and biologically relevant [J]. Functional Ecology, 2005, 19(4): 1365−2435. [15] 牛克昌, 赵志刚, 罗燕江, 等. 施肥对高寒草甸植物群落组分种繁殖分配的影响 [J]. 植物生态学报, 2006, 30(5):817−826. doi: 10.3321/j.issn:1005-264X.2006.05.012NIU K C, ZHAO Z G, LUO Y J, et al. Fertilization effects on species reproductive allocation in an alpine meadow plant community [J]. Journal of Plant Ecology, 2006, 30(5): 817−826.(in Chinese) doi: 10.3321/j.issn:1005-264X.2006.05.012 [16] CYR H, PACE M L. Allometric theory: extrapolations from individuals to communities [J]. Ecology, 1993, 74(4): 1234−1245. doi: 10.2307/1940493 [17] 范高华, 张金伟, 黄迎新, 等. 种群密度对大果虫实形态特征与异速生长的影响 [J]. 生态学报, 2018, 38(11):3931−3942.FAN G H, ZHANG J W, HUANG Y X, et al. Influence of population density on morphological traits and allometric growth of Corispermum macrocarpum [J]. Acta Ecologica Sinica, 2018, 38(11): 3931−3942.(in Chinese) [18] WARTONARTON D I, DUURSMAUURSMA R A, FALSTERALSTER D S, et al. SMATR 3 - an R package for estimation and inference about allometric lines [J]. Methods In Ecology & Evolution, 2012, 3(2): 257−259. [19] 李向岭, 赵明, 李丛锋, 等. 播期和密度对玉米干物质积累动态的影响及其模型的建立 [J]. 作物学报, 2010, 36(12):2143−2153.LI X L, ZHAO M, LI C F, et al. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize [J]. Acta Agronomica Sinica, 2010, 36(12): 2143−2153.(in Chinese) [20] 蒋飞, 曾苏明, 高园园. 不同种植密度对玉米产量的影响 [J]. 现代农业科技, 2011(5):46−47. doi: 10.3969/j.issn.1007-5739.2011.05.022JIANG F, ZENG S M, GAO Y Y. Effects of different planting densities on maize yield [J]. Modern Agricultural Science and Technology, 2011(5): 46−47.(in Chinese) doi: 10.3969/j.issn.1007-5739.2011.05.022 [21] 张凤霞. 密度、个体大小和种子大小对作物生物量分配的影响[D]. 杨凌: 西北农林科技大学, 2016.ZHANG F X. Effect of density, individual and seed size on distribution of biomass[D]. Yangling: Northwest A&F University, 2016. (in Chinese) [22] 徐高福, 徐高翔, 李秀平, 等. 柏木异速生长现象研究 [J]. 中南林业调查规划, 1998(3):21−22.XU G F, XU G X, LI X P, et al. Study on allometric growth of Cypress [J]. Central South Forest Inventory and Planning, 1998(3): 21−22.(in Chinese) [23] PRICE C A, ENQUISTB J, SAVAGE V M. A general model for allometric covariation in botanical form and function [J]. Proceedings of the National Academy of sciences of the United States of America, 2007, 104(32): 13204−13209. doi: 10.1073/pnas.0702242104 [24] 董传聪. 不同植物物种在不同密度条件下的正、负相互作用及其物质能量代谢[D]. 兰州: 兰州大学, 2017.DONG C C. Variation of intraspecific interaction and metabolism of energy substances of different crops in different density gradients[D]. Lanzhou: Lanzhou University, 2007. (in Chinese) [25] 段留生, 韩碧文, 何钟佩. 器官间关系对叶片衰老的影响 [J]. 植物学通报, 1998, 15(1):43−49.DUAN L S, HAN B W, HE Z P. The effects of corelation between leaf and other organs on leaf senescence [J]. Chinese Bulletin of Botany, 1998, 15(1): 43−49.(in Chinese) [26] 张恒嘉, 黄彩霞. 不同灌水量对绿洲春玉米地上部生物量及群体光合性能的影响 [J]. 中国农村水利水电, 2017(1):4−8. doi: 10.3969/j.issn.1007-2284.2017.01.002ZHANG H J, HUANG C X. Effect of different irrigation amounts on above-ground biomass and population photosynthetic performance of spring maize (Zea mays) in Hexi Oasis Regions [J]. China Rural Water and Hydropower, 2017(1): 4−8.(in Chinese) doi: 10.3969/j.issn.1007-2284.2017.01.002 [27] 高繁. 品种、密度及水肥用量对小麦–玉米产量及水分养分吸收利用的影响[D]. 杨凌: 西北农林科技大学, 2018.GAO F. Effect of Variety, density, water and fertilizer amount on yield, the absorption and utilization of water and nutrient of wheat-maize[D]. Yangling: Northwest A&F University, 2018. (in Chinese) [28] BRAUNWORTH JR W S, MACK H J, 李会民. 亏水灌溉对甜玉米产量及品质的影响 [J]. 国外农学: 杂粮作物, 1988(2):23−25.BRAUNWORTH JR W S, MACK H J, LI H M. Effects of deficient irrigation on yield and quality of sweet maize [J]. Rain Fed Crops, 1988(2): 23−25.(in Chinese)