Egg-laying Performance and Prediction Models of Chahua Chickens
-
摘要:
目的 探索茶花鸡产蛋规律,为提高茶花鸡的产蛋性能提供参考。 方法 测定茶花鸡的产蛋性能指标(开产日龄、开产日龄体重、30周龄和43周龄产蛋数和蛋重),并进行皮尔逊相关性分析。采用不同的非线性模型对茶花鸡20~45周龄的产蛋率和累计产蛋数进行曲线拟合分析,并与观测值进行比较。 结果 茶花鸡的开产日龄、30周龄和43周龄蛋重的变异系数均低于10%,开产日龄体重、30周龄及43周龄产蛋数的变异系数则高于10%。产蛋性能指标相关分析结果显示共有10对性状之间具有显著相关性(P<0.05),茶花鸡开产体重与开产日龄呈显著负相关,开产日龄与30周龄及43周龄产蛋数显著负相关,30周龄蛋重与30、43周龄产蛋数显著负相关。开产体重与30周龄及43周龄蛋重显著正相关,开产日龄与30周龄蛋重显著正相关,30周龄蛋重与43周龄蛋重显著正相关,30周龄产蛋数与43周龄产蛋数显著正相关。产蛋率曲线拟合结果表明:拟合度最好的是杨宁模型(R2=0.990);累计产蛋量曲线拟合结果表明,3种模型拟合度都在0.991以上,其中Von Bertalanffy的拟合度最高(R2=0.999)。 结论 茶花鸡开产体重、30周龄和43周龄产蛋数有改良空间,开产日龄、30周龄和43周龄蛋重整齐度较好。由于蛋重跟产蛋数呈负相关,育种过程中应兼顾蛋重与产蛋数,且开产日龄等指标是茶花鸡产蛋性能选育过程中重要的衡量指标。杨宁和Von Bertalanffy模型分别适用于茶花鸡产蛋率和累计产蛋数拟合,可对茶花鸡的产蛋规律进行评估和预测。 Abstract:Objective The egg-laying of Chahua chickens was analyzed, and applicable prediction models evaluated. Methods The indicators of egg-laying performance, including the age and body weight of chicken at start of egg-laying and the individual weight and number of eggs of 30- and 43-week-old chickens, were recorded for a Pearson correlation analysis. Various nonlinear models for curve fitting on egg production rate and cumulative egg production of 20- to 45-week-old chickens were compared. Results The coefficients of variation on the initial egg-laying age and the egg weight of 30- and 43-week-old chickens were below 10%. But those on the body weight at start of egg-laying and the numbers of eggs laid at 30- and 43-week were higher than 10%. There were significant correlations among 10 characteristics of the egg-laying performance (P<0.05). For instance, a significant inverse correlation was observed between the chicken body weight and age at first egg-laying, between the age at start of egg-laying and the egg number of 30- and 43-week-olds, and between the egg weight of 30-week-olds and the numbers of eggs laid by the 30- and 43-week-old chickens. Whereas significant positive correlations were found between the body weight of chickens at time of initial egg-laying and the egg weights of 30- and 43-week-olds and between that and the egg weight of 30-week-olds. Significant correlations were also shown between the egg weight of 30-week-old chickens and that of 43-week-olds, and between the number of eggs laid by the 30-week-olds and that by 43-week-olds. Among the tested models, Yang-Ning had the highest R2 of 0.990 on curve fitting for the egg yield. For the cumulative egg yield, all 3 models yielded R2 above 0.991 with Von Bertalanffy being the highest at 0.999. Conclusion There appeared rooms for performance improvements on the body weight of the birds that started laying eggs and the weights of individual egg laid by the 30- and 43-week-old Chahua chickens, but less so on the starting age of egg-laying and the weights of egg of the 30- and 43-week-olds. Since the egg weight negatively correlated to the number of eggs laid by the chickens, in addition to the starting age of egg-laying, those factors would need be put into consideration in breeding selection. Yang-Ning model seemed adequate for the rate prediction and evaluation, while Von Bertalanffy for the cumulative egg production estimation on Chahua chickens. -
Key words:
- Chahua chickens /
- egg-laying performance /
- egg-laying rate /
- cumulative egg numbers /
- model fitting
-
表 1 4种数学模型表达式
Table 1. Four mathematical models
模型
Model模型表达式
Model expression伍德模型 Wood model y(t)=atbe−ct 分室模型 McMillan model y(t)=a[1−e−c(t−d)]e−bt 杨宁模型 Yang-Ning model y(t)=ae−bt/[1+e−c(t−d)] 三次方程 Cubic equation y(t)=a+bt+ct2+dt3 注:a、b、c和d为待定参数,e为自然对数底,t为产蛋周龄,y(t)为第t周的产蛋率。
Note: a、b、c and d are undetermined parameters, e is the natural base, t is the age of laying week, y(t) is the laying rate at week t.表 2 3种数学模型表达式及拐点周龄、拐点产蛋数计算公式
Table 2. Three mathematical models and formulas for calculating inflection points of chicken age and egg number
模型
Model模型表达式
Model
Expression拐点周龄
Week at
inflection point拐点产蛋数
Number of eggs at
inflection pointLogistic y(t)=a/(1+be−kt) (1nb)/k a/2 Gompertz y(t)=ae−be(−k−t) (1nb)/k a/e Von bertalanffy y(t)=a(1−be−kt)3 (1n3b)/k 8a/27 注:t为产蛋周龄,y(t)为第t周的产蛋数,参数a为极限产蛋数,参数b为待定参数,参数k为接近极限速度,e为自然对数底。
Note: t is the age of laying week, y(t) is the number of laying eggs in week t, parameter a is the limit number of laying eggs, parameter b is the undetermined parameter, parameter k is the speed near the limit, e is the base of the natural logarithm.表 3 茶花鸡产蛋性能指标观测值
Table 3. Observed value of Chahua chicken egg-laying indices
性状
Traits均值±标准差
Mean±standard
deviation变异系数CV
Coefficient of variation/%开产日龄体重
Body weight at first egg/g977.81±137.55 14.07 开产日龄
Age at first egg/d149.11±12.84 8.61 30周龄蛋重
Egg weight at 30 weeks/g37.05±3.25 8.77 30周龄产蛋数
Number of egg for 30 weeks51.24±13.24 25.83 43周龄蛋重
Egg weight at 43 weeks/g41.07±3.92 9.54 43周龄产蛋数
Number of eggs for 43 weeks134.05±34.31 25.60 表 4 茶花鸡产蛋性能相关性分析
Table 4. Correlations on egg-laying performance indicators of Chahua chickens
指标
Indicator开产体重
Body weight at
first egg开产日龄
Age at
first egg30周龄蛋重
Egg weight For
30 weeks30周龄产蛋数
Number of egg
for 30 weeks43周龄蛋重
Egg weight for
43 weeks43周龄产蛋数
Number of egg
for 43 weeks开产体重 Body weight at first egg 开产日龄 Age at first egg −0.245** 30周龄蛋重 Egg weight for 30 weeks 0.335** 0.189** 30周龄产蛋数 Number of egg for 30 weeks 0.07 −0.638** −0.148** 43周龄蛋重 Egg weight for 43 weeks 0.341** 0.091 0.472** −0.058 43周龄产蛋数 Number of eggs for 43 weeks 0.033 −0.461** −0.097** 0.950** −0.043 注:表中数字表示相关系数,**在0.01水平上显著相关,*在0.05水平上显著相关。
Note: The numbers in the table represent correlation coefficients, ** significantly correlated at the level of 0.01, *significantly correlated at the 0.05 level.表 5 茶花鸡产蛋率曲线4种拟合结果
Table 5. Curve fitting of 4 models for egg-laying rate of Chahua chickens
模型
Models拟合模型
Fit models拟合度R2
Fit index R2a b c d 伍德模型 Wood model y(t)=1.46×10−9t10.029e−0.32t 0.731 1.46×10−9 10.029 0.320 分室模型 McMillan model y(t)=309.823×[1−e−0.182(t−19.791)]e−0.047t 0.947 309.823 0.047 0.182 19.791 杨宁模型 Yang-Ning model y(t)=172.824e−0.033t/ [1+e−0.725(t−22.829)] 0.990 172.824 0.033 0.725 22.829 三次方程 Cubic equation y(t) =−889.094+84.699t−2.441t2 +0.023t3 0.933 −889.094 84.699 −2.441 0.023 表 6 茶花鸡产蛋率模型拟合值与观测值
Table 6. Predicted and observed egg-laying rates of Chahua chickens
(单位:%) 周龄
Weeks观测值
Observed value拟合值 Fitted values 伍德模型
Wood model分室模型
McMillan model杨宁模型
Yang-Ning model三次方程
Cubic equation20 10.43 27.06(1.59) 4.52(0.57) 10.18(0.02) 12.49(0.20) 21 18.8 32.05(0.70) 22.81(0.21) 18.13(0.04) 26.11(0.39) 22 30.48 37.11(0.22 ) 36.47(0.20) 29.61(0.03) 37.74(0.24) 23 42.57 42.08(0.01 ) 46.50(0.09) 42.96(0.01) 47.54(0.12) 24 51.69 46.83(0.09 ) 53.67(0.04) 54.82(0.06) 55.62(0.08) 25 65.05 51.21(0.21) 58.60(0.10) 62.74(0.04) 62.13(0.04) 26 69.74 55.11(0.21) 61.80(0.11) 66.60(0.05) 67.21(0.04) 27 69.27 58.43(0.16 ) 63.64(0.08) 67.61(0.02) 71.00(0.02) 28 66.19 61.10(0.08) 64.44(0.03) 67.02(0.01) 73.63(0.11) 29 65.18 63.08 (0.03) 64.45(0.1) 65.62(0.01) 75.24(0.15) 30 61.81 64.35(0.04) 63.84(0.03) 63.86(0.03) 75.98(0.23) 31 61.67 64.93(0.05 ) 62.78(0.02) 61.97(0.00) 75.97(0.23) 32 60.96 64.82(0.06) 61.39(0.01) 60.04(0.02) 75.35(0.24) 33 57.05 64.09(0.12) 59.76(0.05) 58.13(0.02) 74.28(0.30) 34 55.94 62.78(0.12) 57.96(0.04) 56.26(0.01) 72.87(0.30) 35 55.4 60.97(0.10) 56.05(0.01) 54.44(0.02) 71.27(0.29) 36 53.08 58.73(0.11) 54.07(0.02) 52.68(0.01) 69.62(0.31) 37 52.01 56.13(0.08) 52.06(0.00) 50.97(0.02) 68.06(0.31) 38 52.16 53.26(0.02) 50.05(0.04) 49.32(0.05) 66.72(0.28) 39 48.76 50.18(0.03) 48.05(0.01) 47.72(0.02) 65.74(0.35) 40 47.41 46.97(0.01) 46.08(0.03) 46.17(0.03) 65.27(0.38) 41 44.29 43.69(0.01) 44.16(0.00) 44.67(0.01) 65.43(0.48) 42 41.33 40.40(0.02) 42.28(0.02) 43.22(0.05) 66.36(0.61) 43 41.33 37.15(0.10) 40.46(0.02) 41.82(0.01) 68.22(0.65) 44 40.68 33.97(0.16) 38.70(0.05) 40.46(0.01) 71.12(0.75) 45 40.44 30.90(0.24) 36.99(0.09) 39.15(0.03) 75.21(0.86) 注:括号内为模型拟合值与观测值的相对偏差,相对偏差=|拟合值−观测值|/观测值。
Note: the relative deviation between model fitting value and observed value is shown in brackets. The relative deviation =| fitting value − observed value |/ observed value.表 7 茶花鸡3种累计产蛋量曲线拟合结果
Table 7. Curve fitting of 3 models for cumulative egg production of Chahua chickens
模型
Models拟合模型
Fitted models拟合度R2
Fit index R2a b k 拐点周龄
Week at
inflection point拐点产蛋数
Number of eggs at
inflection pointLogistic y(t) = 92.329/(1+1186.759e−0.22t) 0.991 92.329 1186.76 0.22 32.18 46.16 Gompertz y(t) = 104.875e−41.996e−0.123t 0.998 104.875 41.996 0.123 30.39 38.58 Von bertalanffy y(t) = 115.943(1−4.628e−0.09t)3 0.999 115.943 4.628 0.09 29.23 34.35 表 8 茶花鸡实际累计产蛋量与拟合值
Table 8. Observed and predicted cumulative egg production of Chahua chickens
(单位:枚) 周龄
Weeks观测值
Observed value拟合值 Fitted values Logistic Gompertz Von bertalanffy 20 1.46 5.93(3.07) 2.90(0.99) 1.50(0.03) 21 2.05 7.27(2.56) 4.39(1.15) 3.16(0.54) 22 4.18 8.89(1.13) 6.34(0.52) 5.46(0.31) 23 7.16 10.82(0.51) 8.78(0.23) 8.35(0.17) 24 10.78 13.11(0.22) 11.69(0.09) 11.75(0.09) 25 15.33 15.78(0.03) 15.07(0.02) 15.58(0.02) 26 20.21 18.87(0.07) 18.87(0.07) 19.73(0.02) 27 25.06 22.39(0.11) 23.01(0.08) 24.12(0.04) 28 29.70 26.33(0.11) 27.43(0.08) 28.67(0.03) 29 34.26 30.66(0.11) 32.03(0.06) 33.29(0.03) 30 38.58 35.31(0.08) 36.75(0.05) 37.92(0.02) 31 42.90 40.22(0.06) 41.49(0.03) 42.51(0.01) 32 47.17 45.26(0.04) 46.19(0.02) 47.02(0.00) 33 51.16 50.33(0.02) 50.79(0.01) 51.41(0.00) 34 55.08 55.30(0.00) 55.23(0.00) 55.66(0.01) 35 58.96 60.05(0.02) 59.49(0.01) 59.74(0.01) 36 62.67 64.51(0.03) 63.52(0.01) 63.64(0.02) 37 66.31 68.59(0.03) 67.32(0.02) 67.34(0.02) 38 69.96 72.26(0.03) 70.86(0.01) 70.85(0.01) 39 73.38 75.50(0.03) 74.15(0.01) 74.17(0.01) 40 76.70 78.32(0.02) 77.19(0.01) 77.29(0.01) 41 79.80 80.74(0.01) 79.97(0.01) 80.21(0.01) 42 82.69 82.7(0.00) 82.52(0.00) 82.95(0.00) 43 85.61 84.51(0.01) 84.84(0.01) 85.50(0.00) 44 88.48 85.95(0.03) 86.95(0.02) 87.88(0.01) 45 91.33 87.14(0.05) 88.86(0.03) 90.10(0.01) 注:括号内为模型拟合值与观测值的相对偏差,相对偏差=|拟合值−观测值|/观测值。
Note: the relative deviation between model fitting value and observed value is shown in brackets. The relative deviation =| fitting value − observed value |/ observed value. -
[1] DU Y, LIU L, HE Y, et al. Endocrine and genetic factors affecting egg laying performance in chickens: A review [J]. British Poultry Science, 2020, 61(5): 538−549. doi: 10.1080/00071668.2020.1758299 [2] NIU X T, TYASI T L, QIN N, et al. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens [J]. The Journal of Veterinary Medical Science, 2017, 79(5): 927−934. doi: 10.1292/jvms.17-0014 [3] LI X P, LU Y L, LIU X F, et al. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens [J]. Reproduction in Domestic Animals, 2019, 54(4): 702−711. doi: 10.1111/rda.13412 [4] LIU L B, CUI Z F, XIAO Q H, et al. Polymorphisms in the chicken growth differentiation factor 9 gene associated with reproductive traits [J]. BioMed Research International, 2018, 2018: 9345473. [5] 陈海燕. 数学模型在禽类生产研究中的应用 [J]. 丽水师范专科学校学报, 2003, 25(5):50−51.CHEN H Y. Application of Mathematical models in the study on Avian production [J]. Journal of Lishui Teachers College, 2003, 25(5): 50−51.(in Chinese) [6] WOOD P D P. Algebraic model of the lactation curve in cattle [J]. Nature, 1967, 216(5111): 164−165. doi: 10.1038/216164a0 [7] MCMILLAN I, FITZ-EARLE M, ROBSON D S. Quantitative genetics of fertility i. lifetime egg production of Drosophila melanogaster—theoretical [J]. Genetics, 1970, 65(2): 349−353. doi: 10.1093/genetics/65.2.349 [8] YANG N, WU C, MCMILLAN I. New mathematical model of poultry egg production [J]. Poultry Science, 1989, 68(4): 476−481. doi: 10.3382/ps.0680476 [9] 杜文兴. 蛋鸡产蛋率分布规律的研究 [J]. 畜牧与兽医, 1994, 26(6):262−263.DU W X. Study on the Distribution of laying rate of laying Hens [J]. Animal Husbandry & Veterinary Medicine, 1994, 26(6): 262−263.(in Chinese) [10] 滕军, 沈国蕊, 宋志方, 等. 济宁百日鸡产蛋率及累计产蛋数曲线拟合分析 [J]. 中国家禽, 2019, 41(16):77−80.TENG J, SHEN G R, SONG Z F, et al. Curve fitting for laying rate and cumulative egg number of Jining bairi chicken [J]. China Poultry, 2019, 41(16): 77−80.(in Chinese) [11] MIGNON-GRASTEAU S. Genetic parameters of growth curve parameters in male and female chickens [J]. British Poultry Science, 1999, 40(1): 44−51. doi: 10.1080/00071669987827 [12] 滕军. 济宁百日鸡产蛋曲线拟合及ASMT基因5’调控区多态性分析[D]. 泰安: 山东农业大学, 2019.TENG J. Laying curve fitting of Jining bairi chicken and polymorphism analysis of 5’ regulatory region of ASMT gene[D]. Taian: Shandong Agricultural University, 2019. (in Chinese) [13] 刘嘉, 苗小猛, 李富贵, 等. 旧院黑鸡产蛋率和累计产蛋数曲线拟合及产蛋性能相关性分析 [J]. 云南农业大学学报(自然科学), 2020, 35(1):40−47.LIU J, MIAO X M, LI F G, et al. The curves fitting for laying rate and cumulative egg production, and the correlation analysis for laying performance of Jiuyuan black chickens [J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(1): 40−47.(in Chinese) [14] 黄利华. 白羽番鸭卵巢组织转录组及产蛋性状相关基因关联分析[D]. 杨凌: 西北农林科技大学, 2019.HUANG L H. Association analysis of transcription in ovarian and related genes of laying traits in white Muscovy duck[D]. Yangling: Northwest A & F University, 2019. (in Chinese) [15] 张茹, 李旭真, 孙大卫, 等. 茶花鸡和科宝肉鸡肌肉氨基酸含量与GART和IL4I1基因表达差异及相关性分析 [J]. 中国家禽, 2020, 42(12):14−18.ZHANG R, LI X Z, SUN D W, et al. Analysis of the difference and correlation between amino acid content and GART, IL4I1 gene expression in Chahua chicken and Cobb broiler [J]. China Poultry, 2020, 42(12): 14−18.(in Chinese) [16] 蒋开琴, 李文学. 规模化养殖茶花鸡的技术措施 [J]. 当代畜牧, 2013(14):73,75.JIANG K Q, LI W X. Technical measures for large-scale cultivation of Camellia chicken [J]. Contemporary Animal Husbandry, 2013(14): 73,75.(in Chinese) [17] LU J, QU L, SHEN M M, et al. Safety evaluation of daidzein in laying hens: Effects on laying performance, hatchability, egg quality, clinical blood parameters, and organ development [J]. Poultry Science, 2017, 96(7): 2098−2103. doi: 10.3382/ps/pew483 [18] 彭星, 韦荣学, 赵小玲, 等. 二郎山山地鸡肉用系SD02、SD03品系第一、二世代产蛋性能选育效果分析 [J]. 四川农业大学学报, 2013, 31(2):208−210,232. doi: 10.3969/j.issn.1000-2650.2013.02.018PENG X, WEI R X, ZHAO X L, et al. The analysis of breeding effect of laying performances between the two strains of two generations of erlang mountainous chickens [J]. Journal of Sichuan Agricultural University, 2013, 31(2): 208−210,232.(in Chinese) doi: 10.3969/j.issn.1000-2650.2013.02.018 [19] 匡佑华, 徐明明, 彭豫东, 等. 黄麻羽肉用种鸡体质量、体尺、开产日龄与产蛋量的相关分析 [J]. 经济动物学报, 2020, 24(1):31−35.KUANG Y H, XU M M, PENG Y D, et al. Correlative analysis on body mass, body size, age at first egg and egg production of jute broiler [J]. Journal of Economic Animal, 2020, 24(1): 31−35.(in Chinese) [20] 田亚东, 商鹏飞, 焦显芹, 等. 淅川乌骨鸡生长和产蛋曲线的数学模型分析 [J]. 河南农业大学学报, 2014, 48(4):440−444.TIAN Y D, SHANG P F, JIAO X Q, et al. Mathematical model analysis of growth and egg production curve for Xichuan black-bone chickens [J]. Journal of Henan Agricultural University, 2014, 48(4): 440−444.(in Chinese) [21] 付亚伟, 蒋瑞瑞, 李东华, 等. 豫粉1号蛋鸡祖代D系种鸡周产蛋率及其累计产蛋数曲线拟合 [J]. 河南农业科学, 2018, 47(9):138−143.FU Y W, JIANG R R, LI D H, et al. Curve fitting of week laying rate and accumulative egg production in grandparent of egg-laying chicken breed Yufen 1 line D [J]. Journal of Henan Agricultural Sciences, 2018, 47(9): 138−143.(in Chinese) [22] 董晶, 杜炳旺, 刘宜林, 等. 信宜怀乡鸡C品系第3世代产蛋率和累计产蛋数曲线拟合分析 [J]. 南方农业学报, 2017, 48(1):158−162.DONG J, DU B W, LIU Y L, et al. Curve fitting analysis for laying rate and total egg number of the third generation of Xinyi Huaixiang chicken C strain [J]. Journal of Southern Agriculture, 2017, 48(1): 158−162.(in Chinese) [23] 王志成, 苏虎, 何文豪, 等. 淮南麻黄鸡和文昌鸡杂交后代母鸡的生长和产蛋率曲线拟合 [J]. 中国家禽, 2017, 39(7):50−52.WANG Z C, SU H, HE W H, et al. The growth and laying rate curve fitting of hybrid hens of Huainan Ephuang and Wenchang chickens [J]. China Poultry, 2017, 39(7): 50−52.(in Chinese) [24] 王晓峰, 王成丽, 施会强. “京海黄鸡1号”配套系父母代产蛋率与累计产蛋数曲线拟合研究 [J]. 中国家禽, 2015, 37(18):9−13.WANG X F, WANG C L, SHI H Q. Curve fitting analysis of laying rate and accumulative egg production in parents of Jinghai yellow chicken lines1 [J]. China Poultry, 2015, 37(18): 9−13.(in Chinese)