Fluorescence Quenching on PEG400-modified ZnS:Cu Quantum Dots and Herbicide Diquat
-
摘要:
目的 为探讨农药敌草快的快速检测方法,采用水热法制备水溶性PEG400修饰的ZnS:Cu量子点,通过荧光猝灭强度进行量子点与敌草快的互作信号表征。 方法 用荧光分光光度计、傅里叶红外光谱仪及紫外-可见分光光度计对合成的复合量子点进行表征,探究PEG400的修饰量对量子点的影响,同时测定量子点对细菌的抑制作用及毒性。 结果 在适宜的反应条件下,敌草快浓度为1.45×10−6~8.7×10−6 mol·L−1时,量子点荧光猝灭程度与敌草快的浓度呈现较好的线性关系,检出限为2.071×10−7 mol·L−1,相关系数R2达0.9999,是生物相容性好的低毒材料。 结论 所获得的PEG400修饰ZnS:Cu量子点初步可应用于农药敌草快的快速检测中,为相关检测技术的发展奠定基础。 Abstract:Objective Water-soluble PEG400-modified ZnS:Cu quantum dots (QDs) were prepared by hydrothermal method in search for an applicable rapid detection method on diquat. Method The QDs were characterized by their quenching intensities using a fluorescence spectrophotometer, an FTIR, and a UV-Vis spectrophotometer. Effect of PEG400 on the ZnS:Cu QDs was examined to determine the optimal modification for the establishment of a methodology to rapidly detect the toxicity of diquat on microorganisms. The correlation between QD quenching intensity and diquat concentration was examined for the methodology development. Result Under appropriate reaction conditions at the diquat concentration in the range of 1.45×10−6−8.7×10−6mol·L−1, the fluorescence quenching degree of QDs had an excellent linear relationship with diquat concentration of a correlation coefficient of 0.999 9. The detection limit of the method was 2.071×10−7mol·L−1. Conclusion The obtained PEG400-modified ZnS:Cu QDs was considered adequate to be applied for rapid detection of diquat in support of further development of related analytical methodology. -
Key words:
- ZnS: Cu quantum dots /
- PEG400 modification /
- fluorescence quenching /
- diquat
-
图 4 敌草快浓度对量子点的荧光猝灭光谱图
注:a-j敌草快浓度分别为: 0、1.45×10−6、2.9×10−6、4.35×10−6、5.8×10−6、7.25×10−6、8.7×10−6、10.15×10−6、11.6×10−6、13.05×10−6mol·L−1。
Figure 4. Fluorescence quenching spectra of QDs with varied diquat concentrations
Note: a-j: diquat concentrations at 0, 1.45×10−6, 2.9×10−6, 4.35×10−6, 5.8×10−6, 7.25×10−6, 8.7×10−6, 10.15×10−6, 11.6×10−6, and 13.05×10−6mol·L−1, respectively.
表 1 量子点对大肠杆菌生长的平板计数测定
Table 1. Plate counts of Escherichia coli by QDs
平板序号
Plate
number单菌落数
Colony
numbers平板序号
Plate
number单菌落数
Colony
numbers抑菌率
Inhibitory
rate/%a(−) 292 e(+) 221 24.31 b(−) 274 f(+) 235 14.23 c(−) 260 g(+) 236 9.23 均值 Average 275 均值 Average 230 16.36 注:(−)表示未加入量子点;(+)表示加入量子点。
Note: (−): no added QDs; (+): with added QDs. -
[1] 陈超, 潘佳钏, 刘舒芹, 等. 基质辅助激光解吸电离-傅里叶变换离子回旋共振质谱法快速测定蔬菜中百草枯与敌草快 [J]. 分析测试学报, 2021, 40(5):684−689. doi: 10.3969/j.issn.1004-4957.2021.05.009CHEN C, PAN J C, LIU S Q, et al. Rapid Determination of Paraquat and Diquat in Vegetables by Matrix Assisted Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry [J]. Journal of Instrumental Analysis, 2021, 40(5): 684−689.(in Chinese) doi: 10.3969/j.issn.1004-4957.2021.05.009 [2] 肖文娜, 周可金. 作物化学催熟技术的研究与应用 [J]. 湖北农业科学, 2010, 49(7):1722−1725. doi: 10.3969/j.issn.0439-8114.2010.07.058XIAO W N, ZHOU K J. The Research and Application of Chemical Ripening in Crops [J]. Hubei Agricultural Sciences, 2010, 49(7): 1722−1725.(in Chinese) doi: 10.3969/j.issn.0439-8114.2010.07.058 [3] 朱光艳, 秦冬梅, 龚 勇. 敌草快和百草枯在马铃薯中残留检测方法 [J]. 农药科学与管理, 2008, 29(7):11−13. doi: 10.3969/j.issn.1002-5480.2008.07.004ZHU G Y, QIN D M, GONG Y. Residue Analysis of Diquat and Par aquat in Patato by HPLC [J]. Pesticide Science and Administration, 2008, 29(7): 11−13.(in Chinese) doi: 10.3969/j.issn.1002-5480.2008.07.004 [4] 郭佳佳. 基于金纳米和量子点“turn-on”型荧光传感器检测果蔬中农药残留的研究[D]. 长春: 吉林大学, 2015.GUO J J. CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of pesticides[D]. Changchun: Jilin University, 2015. (in chinese) [5] 王纪平. 基于表面增强拉曼散射快速检测果蔬中敌草快方法研究[D]. 秦皇岛: 燕山大学, 2016.WANG J P. Study on rapid detection of diquat in fruits and vegetables based on surface enhanced Raman scattering [D]. Qinhuangdao: Yanshan University, 2016. (in chinese) [6] 赵静, 李琛, 郭自国, 等. 固相萃取/高效液相色谱-串联质谱法测定水中百草枯与敌草快残留 [J]. 分析测试学报, 2018, 37(5):626−629. doi: 10.3969/j.issn.1004-4957.2018.05.018ZHAO J, LI C, GUO Z G, et al. Determination of Paraquat and Diquat Residues in Water by High Performance Liquid Chromatography-Tandem Mass Spectrometry with Solid Phase Extraction [J]. Journal of Instrumental Analysis, 2018, 37(5): 626−629.(in Chinese) doi: 10.3969/j.issn.1004-4957.2018.05.018 [7] HAI N N, CHINH V D, CHI T K, et al. Optical detection of the pesticide by functionalized quantum dots as fluorescence -based biosensor [J]. Key Engineering Materials, 2013, 495(3/4): 314−318. [8] LI T, ZHOU Y Y, SUN J Y, et al. Ultrasensitive detection of glyphosate using CdTe quantum dots in sol-gel-derived silica spheres coated with calix[6] arene as fluorescent probes [J]. American Journal of Analytical Chemistry, 2012, 3(1): 12−18. doi: 10.4236/ajac.2012.31003 [9] YAN X, LI H X, HAN X S, et al. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect [J]. Biosensors and Bioelectronics, 2015, 74: 27−283. [10] 白秋月, 杨春亮, 叶剑芝, 等. 碳量子点荧光探针的设计及其在农残检测中的应用进展 [J]. 分析测试学报, 2019, 38(4):488−494. doi: 10.3969/j.issn.1004-4957.2019.04.019BAI Q Y, YANG C L, YE J Z, et al. Design of Carbon Quantum Dots Fluorescent Probes and Their Application Progress in Detection of Pesticide Residues [J]. Journal of Instrumental Analysis, 2019, 38(4): 488−494.(in Chinese) doi: 10.3969/j.issn.1004-4957.2019.04.019 [11] 胡高爽, 高山, 韩雪, 等. 量子点荧光猝灭免疫亲和凝胶检测柱检测番茄酱中罗丹明B的研究 [J]. 食品工业科技, 2020, 41(20):230−234,245.HU G S, GAO S, HAN X, et al. Quantum Dots-based Fluorescence Quenching Immunoaffinity Test Column for the Quick Detection of Rhodamine B in Tomato Sauce [J]. Science and technology of food industry, 2020, 41(20): 230−234,245.(in Chinese) [12] WANG Y, MO Y, ZHOU L. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin Spectro [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2011, 79: 1311−1315. doi: 10.1016/j.saa.2011.04.061 [13] CHU H W, BIMESH U, ANAND A, et al. Carbon quantum dots for the detection of antibiotics and pesticides [J]. Journal of Food & Drug Analysis, 2020, 28(4): 539−557. [14] YANG G M, HE Y, ZHAO J W. Ratiometric electrochemiluminescence biosensor based on Ir nanorods and CdS quantum dots for the detection of organophosphorus pesticides [J]. Sensors and Actuators B-Chemical, 2021, 341: 130008. doi: 10.1016/j.snb.2021.130008 [15] 彭茂民, 夏虹, 刘丽, 等. 壳聚糖量子点对孔雀石绿的光催化降解 [J]. 湖北农业科学, 2016, 55(24):6557−6559, 6560.PENG M M, XIA H, LIU L, et al. Photocatalytic Degradation of Malachite Green by Chitosan Coated Quantum Dots [J]. Hubei Agricultural Sciences, 2016, 55(24): 6557−6559, 6560.(in Chinese) [16] 熊玉箫. ZnS掺杂量子点的合成与表征[D]. 福州: 福建师范大学, 2014.XIONG Y X. Synthesis and characterization of ZnS doped quantum dots [D]. Fuzhou: Fujian Normal University, 2014. (in chinese) [17] 田修营, 姚俊兰, 胡继林, 等. 微波辅助合成ZnS: Ce纳米晶 [J]. 化工新型材料, 2017, 45(3):175−177.TIAN X Y, YAO J L, HU J L, et al. Microwave-assisted synthesis of ZnS: Ce nanocrystals [J]. New chemical materials, 2017, 45(3): 175−177.(in Chinese) [18] 冯 坚. 绿色掺杂型 ZnS量子点的制备及其光学性能研究[D]. 广州: 暨南大学, 2018.FENG J. Preparation and optical properties of green doped ZnS quantum dots [D]. Guangzhou: Jinan University, 2018. (in chinese) [19] 周建安, 李冬梅, 桑文斌, 等. 核壳结构CdS/ZnS纳米微粒的制备与光学特性 [J]. 化学物理学报, 2004(5):637−640. doi: 10.3969/j.issn.1674-0068.2004.05.024ZHOU J A, LI D M, SANG W B, et al. Preparation of Core-Shell Structure CdS/ZnS Nanoparticles and Their Optical Properties [J]. Chinese Journal of chemical physics, 2004(5): 637−640.(in Chinese) doi: 10.3969/j.issn.1674-0068.2004.05.024 [20] 田昕. ZnS: Cu纳米粒子的制备及发光性质研究[D]. 青岛: 中国海洋大学, 2012.TIAN X. preparation and luminescence properties of ZnS: Cu nanoparticles [D]. Qingdao: Ocean University of China, 2012. (in chinese) [21] 张艺, 朱振华, 李小敏, 等. 聚乙二醇4000修饰ZnS量子点用于双酚A检测 [J]. 化学世界, 2018, 59(3):173−176.ZHANG Y, ZHU Z H, LI X M, et al. Detection of Bisphenol A Using ZnS quantum dots modified by poly(Ethylene Glycol)-4000 [J]. Chemical World, 2018, 59(3): 173−176.(in Chinese) [22] 陆梦晨, 王明辉, 陈婷, 等. 掺杂Cu2+的ZnS量子点的制备和光学性能研究 [J]. 陶瓷学报, 2017, 38(2):194−197.LU M C, WANG M H, CHEN T, et al. Synthesis and optical properties of ZnS doped Cu2+ quantum dots [J]. Journal of Ceramics, 2017, 38(2): 194−197.(in Chinese) [23] 黄珊, 马建强, 张丽霞, 等. CdSe/ZnS量子点荧光猝灭法测定农药甲胺磷 [J]. 湖北大学学报(自然科学版), 2013, 35(3):344−349.HUANG S, MA J Q, ZHANG L X, et al. Fluorescen quenching method for the determination of methamidophos using CdSe/ZnS quantum dots [J]. Journal of Hubei University (Natural Science), 2013, 35(3): 344−349.(in Chinese) [24] 黄珊, 马建强, 董明月, 等. 油溶性CdSe量子点荧光探针直接检测农药胺硫磷 [J]. 光谱学与光谱分析, 2013, 33(10):2853−2857. doi: 10.3964/j.issn.1000-0593(2013)10-2853-05HUANG S, MA J Q, DONG M Y et al. Direct determination of isocarbophos by using oil-soluble CdSe quantum dots as fluorescence probe [J]. Spectroscopy and spectral analysis, 2013, 33(10): 2853−2857.(in Chinese) doi: 10.3964/j.issn.1000-0593(2013)10-2853-05 [25] 杨浩, 王春婷, 吴玉梅, 等. 细胞特性状态及细胞数与OD值的关系探讨 [J]. 动物医学进展, 2002, 23(5):49−51. doi: 10.3969/j.issn.1007-5038.2002.05.016YANG H, WANG C T, WU Y M, et al. Relationship of Cell Properties, States and Number with Optic Density Number in MTT Colorimetric Assay [J]. Advances in animal medicine, 2002, 23(5): 49−51.(in Chinese) doi: 10.3969/j.issn.1007-5038.2002.05.016 [26] 陈巧玲, 陈碧桑, 吴秀婷, 等. 可乐碳量子点的提取及其抑菌性研究 [J]. 现代食品科技, 2018, 34(1):52−56.CHEN Q L, CHEN B S, WU X T, et al. Extraction and Antibacterial Activity of Coca-Cola Carbon Quantum Dots [J]. Modern Food Science and Technology, 2018, 34(1): 52−56.(in Chinese) [27] 李学贵, 袁生. 微生物转化过程中利用OD值实时监测细菌生物量变化的研究 [J]. 南京师大学报(自然科学版), 2003, 26(4):90−93.LI X G, YUAN S. OD Value Assay was Used to Determine Bacterial Biomass in the Real-Time Detection During Microbial Transformation [J]. Journal of nanjing normal university(Natural Science), 2003, 26(4): 90−93.(in Chinese) [28] 曹盛. 环境友好型三元合金量子点的制备巧慘杂及其光电性能研究[D]. 北京: 北京科技大学, 2016.CAO S. Preparation and photoelectric properties of environment-friendly ternary alloy quantum dots [D]. Beijing: Beijing University of science and technology, 2016. (in chinese) [29] 朱陈红. 草甘膦和镉对大肠杆菌的毒性效应研究[D]. 湘潭: 湖南科技大学, 2018.ZHU C H. Toxic effects of glyphosate and cadmium on Escherichia coli [D]. Xiangtan: Hunan University of science and technology, 2018. (in chinese) [30] 旷雅舒. 纳米二氧化铈对大肠杆菌的毒性研究[D]. 广州: 华南理工大学, 2011.KUANG Y S. Toxicity of nano cerium dioxide to Escherichia coli [D]. Guangzhou: South China University of technology, 2011. (in chinese) [31] KONESWARAN M, NARAYANASWAMY R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion [J]. Sensor Actuat B, 2009, 139: 104−109. doi: 10.1016/j.snb.2008.09.028 [32] 颜爱国, 薛继武, 冯起芹. 水溶性ZnS量子点的共沉淀法制备、表征及其光学性能 [J]. 包装学报, 2012, 4(2):18−21. doi: 10.3969/j.issn.1674-7100.2012.02.005YAN A G, XUE J W, FENG Q Q. Preparation, characterization and optical properties of water-soluble ZnS quantum dots by coprecipitation [J]. Journal of packaging, 2012, 4(2): 18−21.(in Chinese) doi: 10.3969/j.issn.1674-7100.2012.02.005